From Wikipedia, the free encyclopedia

Dynamical decoupling (DD) is an open-loop quantum control technique employed in quantum computing to suppress decoherence by taking advantage of rapid, time-dependent control modulation. In its simplest form, DD is implemented by periodic sequences of instantaneous control pulses, whose net effect is to approximately average the unwanted system-environment coupling to zero. [1] [2] Different schemes exist for designing DD protocols that use realistic bounded-strength control pulses, [3] as well as for achieving high-order error suppression, [4] [5] and for making DD compatible with quantum gates. [6] [7] [8] In spin systems in particular, commonly used protocols for dynamical decoupling include the Carr-Purcell and the Carr-Purcell-Meiboom-Gill schemes. [9] [10] They are based on the Hahn spin echo technique of applying periodic pulses to enable refocusing and hence extend the coherence times of qubits.

Periodic repetition of suitable high-order DD sequences may be employed to engineer a 'stroboscopic saturation' of qubit coherence, or coherence plateau, that can persist in the presence of realistic noise spectra and experimental control imperfections. This permits device-independent, high-fidelity data storage for computationally useful periods with bounded error probability. [11]

Dynamical decoupling has also been studied in a classical context for two coupled pendulums whose oscillation frequencies are modulated in time. [12]

References

  1. ^ Viola, L.; Lloyd, S. (1998). "Dynamical suppression of decoherence in two-state quantum systems". Physical Review A. 58 (4): 2733–2744. arXiv: quant-ph/9803057. Bibcode: 1998PhRvA..58.2733V. doi: 10.1103/PhysRevA.58.2733. S2CID  34939261.
  2. ^ Viola, L.; Knill, E.; Lloyd, S. (1999). "Dynamical Decoupling of Open Quantum Systems". Physical Review Letters. 82 (12): 2417–2421. arXiv: quant-ph/9809071. Bibcode: 1999PhRvL..82.2417V. doi: 10.1103/PhysRevLett.82.2417. S2CID  2566091.
  3. ^ Viola, L.; Knill, E. (2003). "Robust Dynamical Decoupling of Quantum Systems with Bounded Controls". Physical Review Letters. 90 (3): 037901. arXiv: quant-ph/0208056. Bibcode: 2003PhRvL..90c7901V. doi: 10.1103/PhysRevLett.90.037901. PMID  12570525. S2CID  32354220.
  4. ^ Khodjasteh, K.; Lidar, D. (2005). "Fault-Tolerant Quantum Dynamical Decoupling". Physical Review Letters. 95 (18): 180501. arXiv: quant-ph/0408128. Bibcode: 2005PhRvL..95r0501K. doi: 10.1103/PhysRevLett.95.180501. PMID  16383882. S2CID  9754216.
  5. ^ Uhrig, G. S. (2007). "Keeping a Quantum Bit Alive by Optimized π-Pulse Sequences". Physical Review Letters. 98 (10): 100504. arXiv: quant-ph/0609203. Bibcode: 2007PhRvL..98j0504U. doi: 10.1103/PhysRevLett.98.100504. PMID  17358521. S2CID  14729824.
  6. ^ Viola, L.; Lloyd, S.; Knill, E. (1999). "Universal Control of Decoupled Quantum Systems". Physical Review Letters. 83 (23): 4888–4891. arXiv: quant-ph/9906094. Bibcode: 1999PhRvL..83.4888V. doi: 10.1103/PhysRevLett.83.4888. S2CID  43014936.
  7. ^ West, J. R.; Lidar, D. A.; Fong, B. H.; Gyure, M. F. (2011). "High Fidelity Quantum Gates via Dynamical Decoupling". Physical Review Letters. 105 (23): 230503. arXiv: 0911.2398. Bibcode: 2010PhRvL.105w0503W. doi: 10.1103/PhysRevLett.105.230503. PMID  21231440. S2CID  18535780.
  8. ^ Yang, W.; Wang, Z. Y.; Liu, R. B. (2010). "Preserving qubit coherence by dynamical decoupling". Frontiers of Physics. 6 (1): 2–14. arXiv: 1007.0623. Bibcode: 2011FrPhy...6....2Y. doi: 10.1007/s11467-010-0113-8. S2CID  118681892.
  9. ^ Carr, H. Y.; Purcell, E. M. (1954-05-01). "Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments". Physical Review. 94 (3): 630–638. Bibcode: 1954PhRv...94..630C. doi: 10.1103/PhysRev.94.630.
  10. ^ Meiboom, S.; Gill, D. (1958-08-01). "Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times". Review of Scientific Instruments. 29 (8): 688–691. Bibcode: 1958RScI...29..688M. doi: 10.1063/1.1716296. ISSN  0034-6748.
  11. ^ Khodjasteh, K.; Sastrawan, J.; Hayes, D.; Green, T. J.; Biercuk, M. J.; Viola, L. (2013). "Designing a practical high-fidelity long-time quantum memory". Nature Communications. 4: 2045. arXiv: 1206.6087. Bibcode: 2013NatCo...4.2045K. doi: 10.1038/ncomms3045. PMID  23784079. S2CID  205317873.
  12. ^ Salerno, Grazia; Carusotto, Iacopo (2014). "Dynamical decoupling and dynamical isolation in temporally modulated coupled pendulums". EPL. 106 (2): 24002. arXiv: 1401.3978. Bibcode: 2014EL....10624002S. doi: 10.1209/0295-5075/106/24002. ISSN  0295-5075. S2CID  119236165.
From Wikipedia, the free encyclopedia

Dynamical decoupling (DD) is an open-loop quantum control technique employed in quantum computing to suppress decoherence by taking advantage of rapid, time-dependent control modulation. In its simplest form, DD is implemented by periodic sequences of instantaneous control pulses, whose net effect is to approximately average the unwanted system-environment coupling to zero. [1] [2] Different schemes exist for designing DD protocols that use realistic bounded-strength control pulses, [3] as well as for achieving high-order error suppression, [4] [5] and for making DD compatible with quantum gates. [6] [7] [8] In spin systems in particular, commonly used protocols for dynamical decoupling include the Carr-Purcell and the Carr-Purcell-Meiboom-Gill schemes. [9] [10] They are based on the Hahn spin echo technique of applying periodic pulses to enable refocusing and hence extend the coherence times of qubits.

Periodic repetition of suitable high-order DD sequences may be employed to engineer a 'stroboscopic saturation' of qubit coherence, or coherence plateau, that can persist in the presence of realistic noise spectra and experimental control imperfections. This permits device-independent, high-fidelity data storage for computationally useful periods with bounded error probability. [11]

Dynamical decoupling has also been studied in a classical context for two coupled pendulums whose oscillation frequencies are modulated in time. [12]

References

  1. ^ Viola, L.; Lloyd, S. (1998). "Dynamical suppression of decoherence in two-state quantum systems". Physical Review A. 58 (4): 2733–2744. arXiv: quant-ph/9803057. Bibcode: 1998PhRvA..58.2733V. doi: 10.1103/PhysRevA.58.2733. S2CID  34939261.
  2. ^ Viola, L.; Knill, E.; Lloyd, S. (1999). "Dynamical Decoupling of Open Quantum Systems". Physical Review Letters. 82 (12): 2417–2421. arXiv: quant-ph/9809071. Bibcode: 1999PhRvL..82.2417V. doi: 10.1103/PhysRevLett.82.2417. S2CID  2566091.
  3. ^ Viola, L.; Knill, E. (2003). "Robust Dynamical Decoupling of Quantum Systems with Bounded Controls". Physical Review Letters. 90 (3): 037901. arXiv: quant-ph/0208056. Bibcode: 2003PhRvL..90c7901V. doi: 10.1103/PhysRevLett.90.037901. PMID  12570525. S2CID  32354220.
  4. ^ Khodjasteh, K.; Lidar, D. (2005). "Fault-Tolerant Quantum Dynamical Decoupling". Physical Review Letters. 95 (18): 180501. arXiv: quant-ph/0408128. Bibcode: 2005PhRvL..95r0501K. doi: 10.1103/PhysRevLett.95.180501. PMID  16383882. S2CID  9754216.
  5. ^ Uhrig, G. S. (2007). "Keeping a Quantum Bit Alive by Optimized π-Pulse Sequences". Physical Review Letters. 98 (10): 100504. arXiv: quant-ph/0609203. Bibcode: 2007PhRvL..98j0504U. doi: 10.1103/PhysRevLett.98.100504. PMID  17358521. S2CID  14729824.
  6. ^ Viola, L.; Lloyd, S.; Knill, E. (1999). "Universal Control of Decoupled Quantum Systems". Physical Review Letters. 83 (23): 4888–4891. arXiv: quant-ph/9906094. Bibcode: 1999PhRvL..83.4888V. doi: 10.1103/PhysRevLett.83.4888. S2CID  43014936.
  7. ^ West, J. R.; Lidar, D. A.; Fong, B. H.; Gyure, M. F. (2011). "High Fidelity Quantum Gates via Dynamical Decoupling". Physical Review Letters. 105 (23): 230503. arXiv: 0911.2398. Bibcode: 2010PhRvL.105w0503W. doi: 10.1103/PhysRevLett.105.230503. PMID  21231440. S2CID  18535780.
  8. ^ Yang, W.; Wang, Z. Y.; Liu, R. B. (2010). "Preserving qubit coherence by dynamical decoupling". Frontiers of Physics. 6 (1): 2–14. arXiv: 1007.0623. Bibcode: 2011FrPhy...6....2Y. doi: 10.1007/s11467-010-0113-8. S2CID  118681892.
  9. ^ Carr, H. Y.; Purcell, E. M. (1954-05-01). "Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments". Physical Review. 94 (3): 630–638. Bibcode: 1954PhRv...94..630C. doi: 10.1103/PhysRev.94.630.
  10. ^ Meiboom, S.; Gill, D. (1958-08-01). "Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times". Review of Scientific Instruments. 29 (8): 688–691. Bibcode: 1958RScI...29..688M. doi: 10.1063/1.1716296. ISSN  0034-6748.
  11. ^ Khodjasteh, K.; Sastrawan, J.; Hayes, D.; Green, T. J.; Biercuk, M. J.; Viola, L. (2013). "Designing a practical high-fidelity long-time quantum memory". Nature Communications. 4: 2045. arXiv: 1206.6087. Bibcode: 2013NatCo...4.2045K. doi: 10.1038/ncomms3045. PMID  23784079. S2CID  205317873.
  12. ^ Salerno, Grazia; Carusotto, Iacopo (2014). "Dynamical decoupling and dynamical isolation in temporally modulated coupled pendulums". EPL. 106 (2): 24002. arXiv: 1401.3978. Bibcode: 2014EL....10624002S. doi: 10.1209/0295-5075/106/24002. ISSN  0295-5075. S2CID  119236165.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook