From Wikipedia, the free encyclopedia
Druses in onion scales (100x magnification)

A druse is a group of crystals of calcium oxalate, [1] silicates, or carbonates present in plants, and are thought to be a defense against herbivory due to their toxicity. Calcium oxalate (Ca(COO)2, CaOx) crystals are found in algae, angiosperms and gymnosperms in a total of more than 215 families. These plants accumulate oxalate in the range of 3–80% (w/w) of their dry weight [2] [3] through a biomineralization process in a variety of shapes. [4] Araceae have numerous druses, multi-crystal druses and needle-shaped raphide crystals of CaOx present in the tissue. [5] Druses are also found in leaves and bud scales of Prunus, Rosa, [6] Allium, Vitis, Morus and Phaseolus. [7] [8]

Formation

A number of biochemical pathways for calcium oxalate biomineralization in plants have been proposed. Among these are the cleavage of isocitrate, the hydrolysis of oxaloacetate, glycolate/glyoxylate oxidation, and/or oxidative cleavage of L-ascorbic acid. [9] The cleavage of ascorbic acid appears to be the most studied pathway. [10] [11] [12] [13] The specific mechanism controlling this process is unclear but it has been suggested that a number of factors influence crystal shape and growth, such as proteins, polysaccharides, and lipids or macromolecular membrane structures. [14] [15] [16] Druses may also have some purpose in calcium regulation.

See also

References

  1. ^ Franceschi VR, Nakata PA (2005). "Calcium oxalate in plants: formation and function". Annu Rev Plant Biol. 56: 41–71. doi: 10.1146/annurev.arplant.56.032604.144106. PMID  15862089.
  2. ^ Zindler-Frank E. (1976). "Oxalate biosynthesis in relation to photosynthetic pathways and plant productivity: a survey". Z. Pflanzenphysiol. 80 (1): 1–13. doi: 10.1016/S0044-328X(76)80044-X.
  3. ^ Libert B, Franceschi VR (1987). "Oxalate in crop plants". J Agric Food Chem. 35 (6): 926–938. doi: 10.1021/jf00078a019.
  4. ^ McNair JB (1932). "The interrelation between substances in plants: essential oils and resins, cyanogen and oxalate". Am J Bot. 19 (3): 255–271. doi: 10.2307/2436337. JSTOR  2436337.
  5. ^ Prychid CJ, Jabaily RS, Rudall PJ (2008). "Cellular ultrastructure and crystal development in Amorphophallus (Araceae)". Ann. Bot. 101 (7): 983–995. doi: 10.1093/aob/mcn022. PMC  2710233. PMID  18285357.
  6. ^ Lersten NR, Horner HT (2006). "Crystal macropattern development in Prunus serotina (Rosaceae, Prunoideae) leaves". Ann. Bot. 97 (5): 723–729. doi: 10.1093/aob/mcl036. PMC  2803424. PMID  16513655.
  7. ^ Jáuregui-Zúñiga D, Reyes-Grajeda JP, Sepúlveda-Sánchez JD, Whitaker JR, Moreno A (2003). "Crystallochemical characterization of calcium oxalate crystals isolated from seed coats of Phaseolus vulgaris and leaves of Vitis vinifera". J Plant Physiol. 160 (3): 239–245. doi: 10.1078/0176-1617-00947. PMID  12749080.
  8. ^ Katayama H, Fujibayashi Y, Nagaoka S, Sugimura Y (2007). "Cell wall sheath surrounding calcium oxalate crystals in mulberry idioblasts". Protoplasma. 231 (3–4): 245–248. doi: 10.1007/s00709-007-0263-x. PMID  17922267. S2CID  29944485.
  9. ^ Hodgkinson A (1977). "Oxalic acid metabolism in higher plants". In A Hodgkinson (ed.). Oxalic Acid Biology and Medicine. Vol. 101. New York: Academic Press. pp. 131–158. doi: 10.1016/0014-5793(79)81066-2. ISBN  9780123517500. {{ cite book}}: |journal= ignored ( help)
  10. ^ Yang J, Loewus FA (1975). "Metabolic conversion of L-ascorbic acid in oxalate-accumulating plants". Plant Physiol. 56 (2): 283–285. doi: 10.1104/pp.56.2.283. PMC  541805. PMID  16659288.
  11. ^ Nuss RF, Loewus FA (1978). "Further studies on oxalic acid biosynthesis in oxalate-accumulating plants". Plant Physiol. 61 (4): 590–592. doi: 10.1104/pp.61.4.590. PMC  1091923. PMID  16660342.
  12. ^ Li XX, Franceschi VR (1990). "Distribution of peroxisomes and glycolate metabolism in relation to calcium oxalate formation in Lemna minor L.". Eur J Cell Biol. 51 (1): 9–16. PMID  2184039.
  13. ^ Keates SA, Tarlyn N, Loewus FA, Franceschi VR (2000). "L-Ascorbic acid and L-galactose are sources of oxalic acid and calcium oxalate in Pistia stratiotes". Phytochemistry. 53 (4): 433–440. Bibcode: 2000PChem..53..433K. doi: 10.1016/S0031-9422(99)00448-3. PMID  10731019.
  14. ^ Horner HT, Wagner BL (1980). "The association of druse crystals with the developing stomium of Capsicum annuum (Solanaceae) anthers". Am J Bot. 67 (9): 1347–1360. doi: 10.2307/2442137. JSTOR  2442137.
  15. ^ Arnott HJ, Webb MA (1983). "Twin crystals of calcium oxalate in the seed coat of the kidney bean". Protoplasma. 114 (1): 23–34. doi: 10.1007/BF01279865. S2CID  180834.
  16. ^ Webb MA (1999). "Cell-mediated crystallization of calcium oxalate in plants". Plant Cell. 11 (4): 751–761. doi: 10.1105/tpc.11.4.751. PMC  144206. PMID  10213791.
From Wikipedia, the free encyclopedia
Druses in onion scales (100x magnification)

A druse is a group of crystals of calcium oxalate, [1] silicates, or carbonates present in plants, and are thought to be a defense against herbivory due to their toxicity. Calcium oxalate (Ca(COO)2, CaOx) crystals are found in algae, angiosperms and gymnosperms in a total of more than 215 families. These plants accumulate oxalate in the range of 3–80% (w/w) of their dry weight [2] [3] through a biomineralization process in a variety of shapes. [4] Araceae have numerous druses, multi-crystal druses and needle-shaped raphide crystals of CaOx present in the tissue. [5] Druses are also found in leaves and bud scales of Prunus, Rosa, [6] Allium, Vitis, Morus and Phaseolus. [7] [8]

Formation

A number of biochemical pathways for calcium oxalate biomineralization in plants have been proposed. Among these are the cleavage of isocitrate, the hydrolysis of oxaloacetate, glycolate/glyoxylate oxidation, and/or oxidative cleavage of L-ascorbic acid. [9] The cleavage of ascorbic acid appears to be the most studied pathway. [10] [11] [12] [13] The specific mechanism controlling this process is unclear but it has been suggested that a number of factors influence crystal shape and growth, such as proteins, polysaccharides, and lipids or macromolecular membrane structures. [14] [15] [16] Druses may also have some purpose in calcium regulation.

See also

References

  1. ^ Franceschi VR, Nakata PA (2005). "Calcium oxalate in plants: formation and function". Annu Rev Plant Biol. 56: 41–71. doi: 10.1146/annurev.arplant.56.032604.144106. PMID  15862089.
  2. ^ Zindler-Frank E. (1976). "Oxalate biosynthesis in relation to photosynthetic pathways and plant productivity: a survey". Z. Pflanzenphysiol. 80 (1): 1–13. doi: 10.1016/S0044-328X(76)80044-X.
  3. ^ Libert B, Franceschi VR (1987). "Oxalate in crop plants". J Agric Food Chem. 35 (6): 926–938. doi: 10.1021/jf00078a019.
  4. ^ McNair JB (1932). "The interrelation between substances in plants: essential oils and resins, cyanogen and oxalate". Am J Bot. 19 (3): 255–271. doi: 10.2307/2436337. JSTOR  2436337.
  5. ^ Prychid CJ, Jabaily RS, Rudall PJ (2008). "Cellular ultrastructure and crystal development in Amorphophallus (Araceae)". Ann. Bot. 101 (7): 983–995. doi: 10.1093/aob/mcn022. PMC  2710233. PMID  18285357.
  6. ^ Lersten NR, Horner HT (2006). "Crystal macropattern development in Prunus serotina (Rosaceae, Prunoideae) leaves". Ann. Bot. 97 (5): 723–729. doi: 10.1093/aob/mcl036. PMC  2803424. PMID  16513655.
  7. ^ Jáuregui-Zúñiga D, Reyes-Grajeda JP, Sepúlveda-Sánchez JD, Whitaker JR, Moreno A (2003). "Crystallochemical characterization of calcium oxalate crystals isolated from seed coats of Phaseolus vulgaris and leaves of Vitis vinifera". J Plant Physiol. 160 (3): 239–245. doi: 10.1078/0176-1617-00947. PMID  12749080.
  8. ^ Katayama H, Fujibayashi Y, Nagaoka S, Sugimura Y (2007). "Cell wall sheath surrounding calcium oxalate crystals in mulberry idioblasts". Protoplasma. 231 (3–4): 245–248. doi: 10.1007/s00709-007-0263-x. PMID  17922267. S2CID  29944485.
  9. ^ Hodgkinson A (1977). "Oxalic acid metabolism in higher plants". In A Hodgkinson (ed.). Oxalic Acid Biology and Medicine. Vol. 101. New York: Academic Press. pp. 131–158. doi: 10.1016/0014-5793(79)81066-2. ISBN  9780123517500. {{ cite book}}: |journal= ignored ( help)
  10. ^ Yang J, Loewus FA (1975). "Metabolic conversion of L-ascorbic acid in oxalate-accumulating plants". Plant Physiol. 56 (2): 283–285. doi: 10.1104/pp.56.2.283. PMC  541805. PMID  16659288.
  11. ^ Nuss RF, Loewus FA (1978). "Further studies on oxalic acid biosynthesis in oxalate-accumulating plants". Plant Physiol. 61 (4): 590–592. doi: 10.1104/pp.61.4.590. PMC  1091923. PMID  16660342.
  12. ^ Li XX, Franceschi VR (1990). "Distribution of peroxisomes and glycolate metabolism in relation to calcium oxalate formation in Lemna minor L.". Eur J Cell Biol. 51 (1): 9–16. PMID  2184039.
  13. ^ Keates SA, Tarlyn N, Loewus FA, Franceschi VR (2000). "L-Ascorbic acid and L-galactose are sources of oxalic acid and calcium oxalate in Pistia stratiotes". Phytochemistry. 53 (4): 433–440. Bibcode: 2000PChem..53..433K. doi: 10.1016/S0031-9422(99)00448-3. PMID  10731019.
  14. ^ Horner HT, Wagner BL (1980). "The association of druse crystals with the developing stomium of Capsicum annuum (Solanaceae) anthers". Am J Bot. 67 (9): 1347–1360. doi: 10.2307/2442137. JSTOR  2442137.
  15. ^ Arnott HJ, Webb MA (1983). "Twin crystals of calcium oxalate in the seed coat of the kidney bean". Protoplasma. 114 (1): 23–34. doi: 10.1007/BF01279865. S2CID  180834.
  16. ^ Webb MA (1999). "Cell-mediated crystallization of calcium oxalate in plants". Plant Cell. 11 (4): 751–761. doi: 10.1105/tpc.11.4.751. PMC  144206. PMID  10213791.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook