PhotosBiographyFacebookTwitter

From Wikipedia, the free encyclopedia
(Redirected from Draft:Tamir Gonen)
Tamir Gonen
Born1975 (age 48–49)
Alma mater University of Auckland ( BS, PhD)
Awards
  • American Diabetes Association Career Development Award
  • Howard Hughes Medical Institute Early Career Scientist
  • A.L. Patterson Award of the American Crystallographic Association
Scientific career
Fields Membrane protein
Structural biology
cryoEM
MicroED
Institutions Howard Hughes Medical Institute
University of California, Los Angeles
Janelia Research Campus
University of Washington
Harvard Medical School
Thesis Novel protein-protein interactions in the lens: a solution to the Mp20 enigma
Doctoral advisor Edward N. Baker
Joerg Kistler
Other academic advisorsThomas Walz
Website https://cryoem.ucla.edu/

Tamir Gonen (born 1975) is an American structural biochemist and membrane biophysicist best known for his contributions to structural biology of membrane proteins, membrane biochemistry and electron cryo-microscopy ( cryoEM) particularly in electron crystallography of 2D crystals and for the development of 3D electron crystallography from microscopic crystals known as MicroED. Gonen is an Investigator of the Howard Hughes Medical Institute, a professor at the University of California, Los Angeles, the founding director of the MicroED Imaging Center at UCLA and a Member of the Royal Society of New Zealand.

Education

Gonen attended the University of Auckland in New Zealand and graduated with a Bachelor of Science double major in Inorganic Chemistry and Biological Sciences, followed by First Class Honors in Biological Sciences in 1998. He then obtained a Doctor of Philosophy in Biological Science in 2002 from the University of Auckland for research with by Edward N. Baker and Joerg Kistler. [1] Postdoctoral education was conducted at Harvard Medical School at the laboratory of Thomas Walz.

Research

Gonen's current research focuses on the structures and functions of medically important membrane proteins that are involved in homeostasis and method development in cryoEM, namely microcrystal electron diffraction ( microED). He published the first atomic resolution structure determined by cryoEM detailing the structure of aquaporin-0 at 1.9Å resolution. [2]

Development of microcrystal electron diffraction

The Gonen laboratory spearheaded the use of electron diffraction for the determination of protein structure from 3D nano crystals in a frozen hydrated state. [3] [4] [5] The method termed microED was established in 2013 with a proof of principle paper published in eLife. [6] In 2014 continuous rotation MicroED was established and demonstrated. [7] In 2015 the first novel structure was determined by MicroED for the protein alpha-synuclein at 1.4Å resolution [8] in collaboration with David Eisenberg and in 2016 microED yielded 1Å resolution data from protein nanocrystals where the phase could be solved ab initio. [9] MicroED has been used for drug discovery, [10] determination of membrane proteins such as ion channels [11] materials [12] and small organic molecules studied in a frozen hydrated state [13] [14] and extended to sub atomic resolution better than 0.8Å. [15]

Career

  • Postdoctoral fellow, Harvard medical School (2002–2005)
  • Assistant professor, University of Washington, Seattle (2005–2010)
  • Early career scientist, Howard Hughes Medical Institute (2009–2011)
  • Associate professor with tenure, University of Washington, Seattle (2011)
  • Group leader, Howard Hughes Medical Institute Janelia Research Campus (2011–2017)
  • Professor of biological chemistry and physiology, University of California Los Angeles, David Geffen School of Medicine (2017–Present)
  • Investigator, Howard Hughes Medical Institute (2017–Present)

Honors

  • First Class Honors in Biological Sciences (University of Auckland, 1998)
  • Career Development Award, American Diabetes Association (2009)
  • Member, Royal Society of New Zealand (2014)
  • Chair, Biophysical Society CryoEM subgroup (2018)
  • A.L. Patterson Award from the American Crystallographic Association (2023)

Memberships

2014 Royal Society of New Zealand

References

  1. ^ Gonen, Tamir (2002). Novel protein-protein interactions in the lens: a solution to the Mp20 enigma (Doctoral thesis). ResearchSpace@Auckland, University of Auckland. hdl: 2292/1094.
  2. ^ Gonen, Tamir; Cheng, Yifan; Sliz, Piotr; Hiroaki, Yoko; Fujiyoshi, Yoshinori; Harrison, Stephen C.; Walz, Thomas (2005-12-01). "Lipid-protein interactions in double-layered two-dimensional AQP0 crystals". Nature. 438 (7068): 633–638. Bibcode: 2005Natur.438..633G. doi: 10.1038/nature04321. ISSN  1476-4687. PMC  1350984. PMID  16319884.
  3. ^ Doerr, Allison (2014). "Electron crystallography goes 3D with MicroED". Nature Methods. 11 (1): 6–7. doi: 10.1038/nmeth.2797. ISSN  1548-7091. PMID  24524127. S2CID  38786632.
  4. ^ Curry, Stephen (2013-11-19). "The Goldilocks Protocol: electrons sent in to put microcrystals to work for structural biology | Stephen Curry". the Guardian. Retrieved 2018-07-31.
  5. ^ Doerr, Allison (2015). "Structures from tiny crystals". Nature Methods. 12 (1): 37. doi: 10.1038/nmeth.3238. ISSN  1548-7091. S2CID  29710840.
  6. ^ Shi, Dan; Nannenga, Brent L.; Iadanza, Matthew G.; Gonen, Tamir (2013-11-19). "Three-dimensional electron crystallography of protein microcrystals". eLife. 2: e01345. doi: 10.7554/eLife.01345. ISSN  2050-084X. PMC  3831942. PMID  24252878.
  7. ^ Nannenga, Brent L.; Shi, Dan; Leslie, Andrew G. W.; Gonen, Tamir (2014). "High-resolution structure determination by continuous-rotation data collection in MicroED". Nature Methods. 11 (9): 927–930. doi: 10.1038/nmeth.3043. ISSN  1548-7105. PMC  4149488. PMID  25086503.
  8. ^ Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.; Cascio, Duilio; Reyes, Francis E.; Shi, Dan; Sangwan, Smriti; Guenther, Elizabeth L.; Johnson, Lisa M. (2015-09-24). "Structure of the toxic core of α-synuclein from invisible crystals". Nature. 525 (7570): 486–490. Bibcode: 2015Natur.525..486R. doi: 10.1038/nature15368. ISSN  1476-4687. PMC  4791177. PMID  26352473.
  9. ^ Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; Collazo, Michael J.; Shi, Dan; Reyes, Francis E.; Hattne, Johan; Gonen, Tamir; Eisenberg, David S. (2016). "Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED". Proceedings of the National Academy of Sciences of the United States of America. 113 (40): 11232–11236. Bibcode: 2016PNAS..11311232S. doi: 10.1073/pnas.1606287113. ISSN  1091-6490. PMC  5056061. PMID  27647903.
  10. ^ Purdy, Michael D.; Shi, Dan; Chrustowicz, Jakub; Hattne, Johan; Gonen, Tamir; Yeager, Mark (2017-12-30). "MicroED Structures of HIV-1 Gag CTD-SP1 Reveal Binding Interactions with the Maturation Inhibitor Bevirimat". bioRxiv  10.1101/241182.
  11. ^ Liu, Shian; Gonen, Tamir (2018-05-03). "MicroED structure of the NaK ion channel reveals a Na+ partition process into the selectivity filter". Communications Biology. 1 (1): 38. doi: 10.1038/s42003-018-0040-8. ISSN  2399-3642. PMC  6112790. PMID  30167468.
  12. ^ Vergara, Sandra; Lukes, Dylan A.; Martynowycz, Michael W.; Santiago, Ulises; Plascencia-Villa, Germán; Weiss, Simon C.; de la Cruz, M. Jason; Black, David M.; Alvarez, Marcos M. (2017-11-16). "MicroED Structure of Au146(p-MBA)57 at Subatomic Resolution Reveals a Twinned FCC Cluster". The Journal of Physical Chemistry Letters. 8 (22): 5523–5530. arXiv: 1706.07902. doi: 10.1021/acs.jpclett.7b02621. ISSN  1948-7185. PMC  5769702. PMID  29072840.
  13. ^ Gallagher-Jones, Marcus; Glynn, Calina; Boyer, David R.; Martynowycz, Michael W.; Hernandez, Evelyn; Miao, Jennifer; Zee, Chih-Te; Novikova, Irina V.; Goldschmidt, Lukasz (2018-01-15). "Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp". Nature Structural & Molecular Biology. 25 (2): 131–134. doi: 10.1038/s41594-017-0018-0. ISSN  1545-9993. PMC  6170007. PMID  29335561.
  14. ^ Jones, GC; Martynowycz, MW; Hattne, J; Fulton, TJ; Stoltz, BM; Rodriguez, JA; Nelson, H; Gonen, T (2018). "The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination" (PDF). ACS Central Science. 4 (11): 1587–1592. doi: 10.26434/chemrxiv.7215332. PMC  6276044. PMID  30555912.
  15. ^ Hughes, Michael P.; Sawaya, Michael R.; Boyer, David R.; Goldschmidt, Lukasz; Rodriguez, Jose A.; Cascio, Duilio; Chong, Lisa; Gonen, Tamir; Eisenberg, David S. (2018). "Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks". Science. 359 (6376): 698–701. Bibcode: 2018Sci...359..698H. doi: 10.1126/science.aan6398. ISSN  1095-9203. PMC  6192703. PMID  29439243.

External links

From Wikipedia, the free encyclopedia
(Redirected from Draft:Tamir Gonen)
Tamir Gonen
Born1975 (age 48–49)
Alma mater University of Auckland ( BS, PhD)
Awards
  • American Diabetes Association Career Development Award
  • Howard Hughes Medical Institute Early Career Scientist
  • A.L. Patterson Award of the American Crystallographic Association
Scientific career
Fields Membrane protein
Structural biology
cryoEM
MicroED
Institutions Howard Hughes Medical Institute
University of California, Los Angeles
Janelia Research Campus
University of Washington
Harvard Medical School
Thesis Novel protein-protein interactions in the lens: a solution to the Mp20 enigma
Doctoral advisor Edward N. Baker
Joerg Kistler
Other academic advisorsThomas Walz
Website https://cryoem.ucla.edu/

Tamir Gonen (born 1975) is an American structural biochemist and membrane biophysicist best known for his contributions to structural biology of membrane proteins, membrane biochemistry and electron cryo-microscopy ( cryoEM) particularly in electron crystallography of 2D crystals and for the development of 3D electron crystallography from microscopic crystals known as MicroED. Gonen is an Investigator of the Howard Hughes Medical Institute, a professor at the University of California, Los Angeles, the founding director of the MicroED Imaging Center at UCLA and a Member of the Royal Society of New Zealand.

Education

Gonen attended the University of Auckland in New Zealand and graduated with a Bachelor of Science double major in Inorganic Chemistry and Biological Sciences, followed by First Class Honors in Biological Sciences in 1998. He then obtained a Doctor of Philosophy in Biological Science in 2002 from the University of Auckland for research with by Edward N. Baker and Joerg Kistler. [1] Postdoctoral education was conducted at Harvard Medical School at the laboratory of Thomas Walz.

Research

Gonen's current research focuses on the structures and functions of medically important membrane proteins that are involved in homeostasis and method development in cryoEM, namely microcrystal electron diffraction ( microED). He published the first atomic resolution structure determined by cryoEM detailing the structure of aquaporin-0 at 1.9Å resolution. [2]

Development of microcrystal electron diffraction

The Gonen laboratory spearheaded the use of electron diffraction for the determination of protein structure from 3D nano crystals in a frozen hydrated state. [3] [4] [5] The method termed microED was established in 2013 with a proof of principle paper published in eLife. [6] In 2014 continuous rotation MicroED was established and demonstrated. [7] In 2015 the first novel structure was determined by MicroED for the protein alpha-synuclein at 1.4Å resolution [8] in collaboration with David Eisenberg and in 2016 microED yielded 1Å resolution data from protein nanocrystals where the phase could be solved ab initio. [9] MicroED has been used for drug discovery, [10] determination of membrane proteins such as ion channels [11] materials [12] and small organic molecules studied in a frozen hydrated state [13] [14] and extended to sub atomic resolution better than 0.8Å. [15]

Career

  • Postdoctoral fellow, Harvard medical School (2002–2005)
  • Assistant professor, University of Washington, Seattle (2005–2010)
  • Early career scientist, Howard Hughes Medical Institute (2009–2011)
  • Associate professor with tenure, University of Washington, Seattle (2011)
  • Group leader, Howard Hughes Medical Institute Janelia Research Campus (2011–2017)
  • Professor of biological chemistry and physiology, University of California Los Angeles, David Geffen School of Medicine (2017–Present)
  • Investigator, Howard Hughes Medical Institute (2017–Present)

Honors

  • First Class Honors in Biological Sciences (University of Auckland, 1998)
  • Career Development Award, American Diabetes Association (2009)
  • Member, Royal Society of New Zealand (2014)
  • Chair, Biophysical Society CryoEM subgroup (2018)
  • A.L. Patterson Award from the American Crystallographic Association (2023)

Memberships

2014 Royal Society of New Zealand

References

  1. ^ Gonen, Tamir (2002). Novel protein-protein interactions in the lens: a solution to the Mp20 enigma (Doctoral thesis). ResearchSpace@Auckland, University of Auckland. hdl: 2292/1094.
  2. ^ Gonen, Tamir; Cheng, Yifan; Sliz, Piotr; Hiroaki, Yoko; Fujiyoshi, Yoshinori; Harrison, Stephen C.; Walz, Thomas (2005-12-01). "Lipid-protein interactions in double-layered two-dimensional AQP0 crystals". Nature. 438 (7068): 633–638. Bibcode: 2005Natur.438..633G. doi: 10.1038/nature04321. ISSN  1476-4687. PMC  1350984. PMID  16319884.
  3. ^ Doerr, Allison (2014). "Electron crystallography goes 3D with MicroED". Nature Methods. 11 (1): 6–7. doi: 10.1038/nmeth.2797. ISSN  1548-7091. PMID  24524127. S2CID  38786632.
  4. ^ Curry, Stephen (2013-11-19). "The Goldilocks Protocol: electrons sent in to put microcrystals to work for structural biology | Stephen Curry". the Guardian. Retrieved 2018-07-31.
  5. ^ Doerr, Allison (2015). "Structures from tiny crystals". Nature Methods. 12 (1): 37. doi: 10.1038/nmeth.3238. ISSN  1548-7091. S2CID  29710840.
  6. ^ Shi, Dan; Nannenga, Brent L.; Iadanza, Matthew G.; Gonen, Tamir (2013-11-19). "Three-dimensional electron crystallography of protein microcrystals". eLife. 2: e01345. doi: 10.7554/eLife.01345. ISSN  2050-084X. PMC  3831942. PMID  24252878.
  7. ^ Nannenga, Brent L.; Shi, Dan; Leslie, Andrew G. W.; Gonen, Tamir (2014). "High-resolution structure determination by continuous-rotation data collection in MicroED". Nature Methods. 11 (9): 927–930. doi: 10.1038/nmeth.3043. ISSN  1548-7105. PMC  4149488. PMID  25086503.
  8. ^ Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.; Cascio, Duilio; Reyes, Francis E.; Shi, Dan; Sangwan, Smriti; Guenther, Elizabeth L.; Johnson, Lisa M. (2015-09-24). "Structure of the toxic core of α-synuclein from invisible crystals". Nature. 525 (7570): 486–490. Bibcode: 2015Natur.525..486R. doi: 10.1038/nature15368. ISSN  1476-4687. PMC  4791177. PMID  26352473.
  9. ^ Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; Collazo, Michael J.; Shi, Dan; Reyes, Francis E.; Hattne, Johan; Gonen, Tamir; Eisenberg, David S. (2016). "Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED". Proceedings of the National Academy of Sciences of the United States of America. 113 (40): 11232–11236. Bibcode: 2016PNAS..11311232S. doi: 10.1073/pnas.1606287113. ISSN  1091-6490. PMC  5056061. PMID  27647903.
  10. ^ Purdy, Michael D.; Shi, Dan; Chrustowicz, Jakub; Hattne, Johan; Gonen, Tamir; Yeager, Mark (2017-12-30). "MicroED Structures of HIV-1 Gag CTD-SP1 Reveal Binding Interactions with the Maturation Inhibitor Bevirimat". bioRxiv  10.1101/241182.
  11. ^ Liu, Shian; Gonen, Tamir (2018-05-03). "MicroED structure of the NaK ion channel reveals a Na+ partition process into the selectivity filter". Communications Biology. 1 (1): 38. doi: 10.1038/s42003-018-0040-8. ISSN  2399-3642. PMC  6112790. PMID  30167468.
  12. ^ Vergara, Sandra; Lukes, Dylan A.; Martynowycz, Michael W.; Santiago, Ulises; Plascencia-Villa, Germán; Weiss, Simon C.; de la Cruz, M. Jason; Black, David M.; Alvarez, Marcos M. (2017-11-16). "MicroED Structure of Au146(p-MBA)57 at Subatomic Resolution Reveals a Twinned FCC Cluster". The Journal of Physical Chemistry Letters. 8 (22): 5523–5530. arXiv: 1706.07902. doi: 10.1021/acs.jpclett.7b02621. ISSN  1948-7185. PMC  5769702. PMID  29072840.
  13. ^ Gallagher-Jones, Marcus; Glynn, Calina; Boyer, David R.; Martynowycz, Michael W.; Hernandez, Evelyn; Miao, Jennifer; Zee, Chih-Te; Novikova, Irina V.; Goldschmidt, Lukasz (2018-01-15). "Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp". Nature Structural & Molecular Biology. 25 (2): 131–134. doi: 10.1038/s41594-017-0018-0. ISSN  1545-9993. PMC  6170007. PMID  29335561.
  14. ^ Jones, GC; Martynowycz, MW; Hattne, J; Fulton, TJ; Stoltz, BM; Rodriguez, JA; Nelson, H; Gonen, T (2018). "The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination" (PDF). ACS Central Science. 4 (11): 1587–1592. doi: 10.26434/chemrxiv.7215332. PMC  6276044. PMID  30555912.
  15. ^ Hughes, Michael P.; Sawaya, Michael R.; Boyer, David R.; Goldschmidt, Lukasz; Rodriguez, Jose A.; Cascio, Duilio; Chong, Lisa; Gonen, Tamir; Eisenberg, David S. (2018). "Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks". Science. 359 (6376): 698–701. Bibcode: 2018Sci...359..698H. doi: 10.1126/science.aan6398. ISSN  1095-9203. PMC  6192703. PMID  29439243.

External links


Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook