From Wikipedia, the free encyclopedia

Fast-spiking Parvalbumin Positive GABAergic Interneurons (sometimes refered to as PV+ interneurons) are a subset of interneurons that feature distinct fast-spiking electrophysiological properties and are typically identified based on expression of the calcium-binding protein parvalbumin [1] [2] [3]

Anatomy

Their morphology typically falls into either the subcategory of basket cells or chandelier cells and are commonly ensheathed in perineuronal nets, although delineation of interneuron subtypes is a developing field [4]

Network Activity

PV+ Interneurons play significant roles in many aspects of network activity such as feedforward inhibition, feedback inhibition, network oscillations, and regulation of plasticity [5]

This type of cells receives the greatest amount of excitatory input of any inhibitory neuron in the cortex, and they powerfully regulate local pyramidal cell network activity [6] [7]

During gamma-oscillations the metabolic demand on PV+ interneurons is similar to that observed in seizure-like events [8], suggesting that during heightened activity this cell type is prone to metabolic disruption [9] [10]

Perineuronal Nets

Supporting structures such as the specialized ECM structure perineuronal nets (PNNs) preferentially [11] wrap around PV+ interneurons to support their fast-spiking properties by providing a cation rich environment, reducing membrance capacitance and buffering them against metabolic stress [12] [13]

Critical Period Regulation

The developmental trajectory of PV+ interneurons and the supporting PNNs that wrap around them coincides with critical period opening and closure, with maturation of the PV+ interneurons and the PNNs marking the closure of the critical period. [14] [15] [16] [17]

Treatment with NMDA receptor antagonist such as ketamine, PCP, or MK-801 that disrupt the NMDAR-mediated input to PV+ Interneurons have the potential to modulate critical period plasticity [18]

References

  1. ^ Hu, Hua; Gan, Jian; Jonas, Peter (August 2014). "Fast-spiking, parvalbumin + GABAergic interneurons: From cellular design to microcircuit function". Science. 345 (6196). doi: 10.1126/science.1255263. ISSN  0036-8075. PMID  25082707.
  2. ^ Stedehouder, J.; Couey, J. J.; Brizee, D.; Hosseini, B.; Slotman, J. A.; Dirven, C. M. F.; Shpak, G.; Houtsmuller, A. B.; Kushner, S. A. (2017-08-09). "Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans". Cerebral Cortex. 27 (10): 5001–5013. doi: 10.1093/cercor/bhx203. ISSN  1047-3211. PMID  28922832.
  3. ^ Bartholome, Odile; de la Brassinne Bonardeaux, Orianne; Neirinckx, Virginie; Rogister, Bernard (2020). "A Composite Sketch of Fast-Spiking Parvalbumin-Positive Neurons". Cerebral Cortex Communications. 1 (1): tgaa026. doi: 10.1093/texcom/tgaa026. ISSN  2632-7376. PMC  8153048. PMID  34296100.
  4. ^ Lee, Brian R.; Dalley, Rachel; Miller, Jeremy A.; Chartrand, Thomas; Close, Jennie; Mann, Rusty; Mukora, Alice; Ng, Lindsay; Alfiler, Lauren; Baker, Katherine; Bertagnolli, Darren; Brouner, Krissy; Casper, Tamara; Csajbok, Eva; Donadio, Nicholas (2023-10-13). "Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex". Science. 382 (6667): eadf6484. doi: 10.1126/science.adf6484. hdl: 1871.1/71259d89-ad52-46ea-bcc5-bf472765c3ce. ISSN  0036-8075. PMID  37824669.
  5. ^ Ruden, Jacob B.; Dugan, Laura L.; Konradi, Christine (January 2021). "Parvalbumin interneuron vulnerability and brain disorders". Neuropsychopharmacology. 46 (2): 279–287. doi: 10.1038/s41386-020-0778-9. ISSN  0893-133X. PMC  7852528. PMID  32722660.
  6. ^ Behrens, M. Margarita; Ali, Sameh S.; Dao, Diep N.; Lucero, Jacinta; Shekhtman, Grigoriy; Quick, Kevin L.; Dugan, Laura L. (2007-12-07). "Ketamine-Induced Loss of Phenotype of Fast-Spiking Interneurons Is Mediated by NADPH-Oxidase". Science. 318 (5856): 1645–1647. Bibcode: 2007Sci...318.1645B. doi: 10.1126/science.1148045. ISSN  0036-8075. PMID  18063801.
  7. ^ Gulyás, Attila I.; Megı́as, Manuel; Emri, Zsuzsa; Freund, Tamás F. (1999-11-15). "Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus". The Journal of Neuroscience. 19 (22): 10082–10097. doi: 10.1523/JNEUROSCI.19-22-10082.1999. ISSN  0270-6474. PMC  6782984. PMID  10559416.
  8. ^ Kann, Oliver; Huchzermeyer, Christine; Kovács, Richard; Wirtz, Stefanie; Schuelke, Markus (February 2011). "Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria". Brain: A Journal of Neurology. 134 (Pt 2): 345–358. doi: 10.1093/brain/awq333. ISSN  1460-2156. PMID  21183487.
  9. ^ Inan, Melis; Zhao, Mingrui; Manuszak, Monica; Karakaya, Cansu; Rajadhyaksha, Anjali M.; Pickel, Virginia M.; Schwartz, Theodore H.; Goldstein, Peter A.; Manfredi, Giovanni (September 2016). "Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability". Neurobiology of Disease. 93: 35–46. doi: 10.1016/j.nbd.2016.04.004. PMID  27105708.
  10. ^ Kann, Oliver; Papageorgiou, Ismini E; Draguhn, Andreas (August 2014). "Highly Energized Inhibitory Interneurons are a Central Element for Information Processing in Cortical Networks". Journal of Cerebral Blood Flow & Metabolism. 34 (8): 1270–1282. doi: 10.1038/jcbfm.2014.104. ISSN  0271-678X. PMC  4126088. PMID  24896567.
  11. ^ Morris, Neil P.; Henderson, Zaineb (March 2000). "Perineuronal nets ensheath fast spiking, parvalbumin-immunoreactive neurons in the medial septum/diagonal band complex". European Journal of Neuroscience. 12 (3): 828–838. doi: 10.1046/j.1460-9568.2000.00970.x. ISSN  0953-816X. PMID  10762312.
  12. ^ Burket, Jessica A.; Webb, Jason D.; Deutsch, Stephen I. (August 2021). "Perineuronal Nets and Metal Cation Concentrations in the Microenvironments of Fast-Spiking, Parvalbumin-Expressing GABAergic Interneurons: Relevance to Neurodevelopment and Neurodevelopmental Disorders". Biomolecules. 11 (8): 1235. doi: 10.3390/biom11081235. ISSN  2218-273X. PMC  8391699. PMID  34439901.
  13. ^ Tewari, Bhanu P.; Chaunsali, Lata; Campbell, Susan L.; Patel, Dipan C.; Goode, Adam E.; Sontheimer, Harald (2018-11-09). "Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy". Nature Communications. 9 (1): 4724. Bibcode: 2018NatCo...9.4724T. doi: 10.1038/s41467-018-07113-0. ISSN  2041-1723. PMC  6226462. PMID  30413686.
  14. ^ Reh, Rebecca K.; Dias, Brian G.; Nelson, Charles A.; Kaufer, Daniela; Werker, Janet F.; Kolb, Bryan; Levine, Joel D.; Hensch, Takao K. (2020-09-22). "Critical period regulation across multiple timescales". Proceedings of the National Academy of Sciences. 117 (38): 23242–23251. Bibcode: 2020PNAS..11723242R. doi: 10.1073/pnas.1820836117. ISSN  0027-8424. PMC  7519216. PMID  32503914.
  15. ^ Wingert, Jereme C.; Sorg, Barbara A. (2021-05-10). "Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review". Frontiers in Synaptic Neuroscience. 13. doi: 10.3389/fnsyn.2021.673210. ISSN  1663-3563. PMC  8141737. PMID  34040511.
  16. ^ Faini, Giulia; Aguirre, Andrea; Landi, Silvia; Lamers, Didi; Pizzorusso, Tommaso; Ratto, Gian Michele; Deleuze, Charlotte; Bacci, Alberto (2018-11-28). "Author response: Perineuronal nets control visual input via thalamic recruitment of cortical PV interneurons". doi: 10.7554/elife.41520.030. {{ cite journal}}: Cite journal requires |journal= ( help)
  17. ^ Gibel-Russo, Rachel; Benacom, David; Di Nardo, Ariel A. (2022-04-26). "Non-Cell-Autonomous Factors Implicated in Parvalbumin Interneuron Maturation and Critical Periods". Frontiers in Neural Circuits. 16. doi: 10.3389/fncir.2022.875873. ISSN  1662-5110. PMC  9115720. PMID  35601531.
  18. ^ Klimczak, Patrycja; Rizzo, Arianna; Castillo-Gómez, Esther; Perez-Rando, Marta; Gramuntell, Yaiza; Beltran, Marc; Nacher, Juan (2021-09-22). "Parvalbumin Interneurons and Perineuronal Nets in the Hippocampus and Retrosplenial Cortex of Adult Male Mice After Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment". Frontiers in Synaptic Neuroscience. 13. doi: 10.3389/fnsyn.2021.733989. ISSN  1663-3563. PMC  8493248. PMID  34630066.
From Wikipedia, the free encyclopedia

Fast-spiking Parvalbumin Positive GABAergic Interneurons (sometimes refered to as PV+ interneurons) are a subset of interneurons that feature distinct fast-spiking electrophysiological properties and are typically identified based on expression of the calcium-binding protein parvalbumin [1] [2] [3]

Anatomy

Their morphology typically falls into either the subcategory of basket cells or chandelier cells and are commonly ensheathed in perineuronal nets, although delineation of interneuron subtypes is a developing field [4]

Network Activity

PV+ Interneurons play significant roles in many aspects of network activity such as feedforward inhibition, feedback inhibition, network oscillations, and regulation of plasticity [5]

This type of cells receives the greatest amount of excitatory input of any inhibitory neuron in the cortex, and they powerfully regulate local pyramidal cell network activity [6] [7]

During gamma-oscillations the metabolic demand on PV+ interneurons is similar to that observed in seizure-like events [8], suggesting that during heightened activity this cell type is prone to metabolic disruption [9] [10]

Perineuronal Nets

Supporting structures such as the specialized ECM structure perineuronal nets (PNNs) preferentially [11] wrap around PV+ interneurons to support their fast-spiking properties by providing a cation rich environment, reducing membrance capacitance and buffering them against metabolic stress [12] [13]

Critical Period Regulation

The developmental trajectory of PV+ interneurons and the supporting PNNs that wrap around them coincides with critical period opening and closure, with maturation of the PV+ interneurons and the PNNs marking the closure of the critical period. [14] [15] [16] [17]

Treatment with NMDA receptor antagonist such as ketamine, PCP, or MK-801 that disrupt the NMDAR-mediated input to PV+ Interneurons have the potential to modulate critical period plasticity [18]

References

  1. ^ Hu, Hua; Gan, Jian; Jonas, Peter (August 2014). "Fast-spiking, parvalbumin + GABAergic interneurons: From cellular design to microcircuit function". Science. 345 (6196). doi: 10.1126/science.1255263. ISSN  0036-8075. PMID  25082707.
  2. ^ Stedehouder, J.; Couey, J. J.; Brizee, D.; Hosseini, B.; Slotman, J. A.; Dirven, C. M. F.; Shpak, G.; Houtsmuller, A. B.; Kushner, S. A. (2017-08-09). "Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans". Cerebral Cortex. 27 (10): 5001–5013. doi: 10.1093/cercor/bhx203. ISSN  1047-3211. PMID  28922832.
  3. ^ Bartholome, Odile; de la Brassinne Bonardeaux, Orianne; Neirinckx, Virginie; Rogister, Bernard (2020). "A Composite Sketch of Fast-Spiking Parvalbumin-Positive Neurons". Cerebral Cortex Communications. 1 (1): tgaa026. doi: 10.1093/texcom/tgaa026. ISSN  2632-7376. PMC  8153048. PMID  34296100.
  4. ^ Lee, Brian R.; Dalley, Rachel; Miller, Jeremy A.; Chartrand, Thomas; Close, Jennie; Mann, Rusty; Mukora, Alice; Ng, Lindsay; Alfiler, Lauren; Baker, Katherine; Bertagnolli, Darren; Brouner, Krissy; Casper, Tamara; Csajbok, Eva; Donadio, Nicholas (2023-10-13). "Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex". Science. 382 (6667): eadf6484. doi: 10.1126/science.adf6484. hdl: 1871.1/71259d89-ad52-46ea-bcc5-bf472765c3ce. ISSN  0036-8075. PMID  37824669.
  5. ^ Ruden, Jacob B.; Dugan, Laura L.; Konradi, Christine (January 2021). "Parvalbumin interneuron vulnerability and brain disorders". Neuropsychopharmacology. 46 (2): 279–287. doi: 10.1038/s41386-020-0778-9. ISSN  0893-133X. PMC  7852528. PMID  32722660.
  6. ^ Behrens, M. Margarita; Ali, Sameh S.; Dao, Diep N.; Lucero, Jacinta; Shekhtman, Grigoriy; Quick, Kevin L.; Dugan, Laura L. (2007-12-07). "Ketamine-Induced Loss of Phenotype of Fast-Spiking Interneurons Is Mediated by NADPH-Oxidase". Science. 318 (5856): 1645–1647. Bibcode: 2007Sci...318.1645B. doi: 10.1126/science.1148045. ISSN  0036-8075. PMID  18063801.
  7. ^ Gulyás, Attila I.; Megı́as, Manuel; Emri, Zsuzsa; Freund, Tamás F. (1999-11-15). "Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus". The Journal of Neuroscience. 19 (22): 10082–10097. doi: 10.1523/JNEUROSCI.19-22-10082.1999. ISSN  0270-6474. PMC  6782984. PMID  10559416.
  8. ^ Kann, Oliver; Huchzermeyer, Christine; Kovács, Richard; Wirtz, Stefanie; Schuelke, Markus (February 2011). "Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria". Brain: A Journal of Neurology. 134 (Pt 2): 345–358. doi: 10.1093/brain/awq333. ISSN  1460-2156. PMID  21183487.
  9. ^ Inan, Melis; Zhao, Mingrui; Manuszak, Monica; Karakaya, Cansu; Rajadhyaksha, Anjali M.; Pickel, Virginia M.; Schwartz, Theodore H.; Goldstein, Peter A.; Manfredi, Giovanni (September 2016). "Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability". Neurobiology of Disease. 93: 35–46. doi: 10.1016/j.nbd.2016.04.004. PMID  27105708.
  10. ^ Kann, Oliver; Papageorgiou, Ismini E; Draguhn, Andreas (August 2014). "Highly Energized Inhibitory Interneurons are a Central Element for Information Processing in Cortical Networks". Journal of Cerebral Blood Flow & Metabolism. 34 (8): 1270–1282. doi: 10.1038/jcbfm.2014.104. ISSN  0271-678X. PMC  4126088. PMID  24896567.
  11. ^ Morris, Neil P.; Henderson, Zaineb (March 2000). "Perineuronal nets ensheath fast spiking, parvalbumin-immunoreactive neurons in the medial septum/diagonal band complex". European Journal of Neuroscience. 12 (3): 828–838. doi: 10.1046/j.1460-9568.2000.00970.x. ISSN  0953-816X. PMID  10762312.
  12. ^ Burket, Jessica A.; Webb, Jason D.; Deutsch, Stephen I. (August 2021). "Perineuronal Nets and Metal Cation Concentrations in the Microenvironments of Fast-Spiking, Parvalbumin-Expressing GABAergic Interneurons: Relevance to Neurodevelopment and Neurodevelopmental Disorders". Biomolecules. 11 (8): 1235. doi: 10.3390/biom11081235. ISSN  2218-273X. PMC  8391699. PMID  34439901.
  13. ^ Tewari, Bhanu P.; Chaunsali, Lata; Campbell, Susan L.; Patel, Dipan C.; Goode, Adam E.; Sontheimer, Harald (2018-11-09). "Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy". Nature Communications. 9 (1): 4724. Bibcode: 2018NatCo...9.4724T. doi: 10.1038/s41467-018-07113-0. ISSN  2041-1723. PMC  6226462. PMID  30413686.
  14. ^ Reh, Rebecca K.; Dias, Brian G.; Nelson, Charles A.; Kaufer, Daniela; Werker, Janet F.; Kolb, Bryan; Levine, Joel D.; Hensch, Takao K. (2020-09-22). "Critical period regulation across multiple timescales". Proceedings of the National Academy of Sciences. 117 (38): 23242–23251. Bibcode: 2020PNAS..11723242R. doi: 10.1073/pnas.1820836117. ISSN  0027-8424. PMC  7519216. PMID  32503914.
  15. ^ Wingert, Jereme C.; Sorg, Barbara A. (2021-05-10). "Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review". Frontiers in Synaptic Neuroscience. 13. doi: 10.3389/fnsyn.2021.673210. ISSN  1663-3563. PMC  8141737. PMID  34040511.
  16. ^ Faini, Giulia; Aguirre, Andrea; Landi, Silvia; Lamers, Didi; Pizzorusso, Tommaso; Ratto, Gian Michele; Deleuze, Charlotte; Bacci, Alberto (2018-11-28). "Author response: Perineuronal nets control visual input via thalamic recruitment of cortical PV interneurons". doi: 10.7554/elife.41520.030. {{ cite journal}}: Cite journal requires |journal= ( help)
  17. ^ Gibel-Russo, Rachel; Benacom, David; Di Nardo, Ariel A. (2022-04-26). "Non-Cell-Autonomous Factors Implicated in Parvalbumin Interneuron Maturation and Critical Periods". Frontiers in Neural Circuits. 16. doi: 10.3389/fncir.2022.875873. ISSN  1662-5110. PMC  9115720. PMID  35601531.
  18. ^ Klimczak, Patrycja; Rizzo, Arianna; Castillo-Gómez, Esther; Perez-Rando, Marta; Gramuntell, Yaiza; Beltran, Marc; Nacher, Juan (2021-09-22). "Parvalbumin Interneurons and Perineuronal Nets in the Hippocampus and Retrosplenial Cortex of Adult Male Mice After Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment". Frontiers in Synaptic Neuroscience. 13. doi: 10.3389/fnsyn.2021.733989. ISSN  1663-3563. PMC  8493248. PMID  34630066.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook