From Wikipedia, the free encyclopedia

In mathematics, the Denjoy–Young–Saks theorem gives some possibilities for the Dini derivatives of a function that hold almost everywhere. Denjoy ( 1915) proved the theorem for continuous functions, Young ( 1917) extended it to measurable functions, and Saks ( 1924) extended it to arbitrary functions. Saks (1937, Chapter IX, section 4) and Bruckner (1978, chapter IV, theorem 4.4) give historical accounts of the theorem.

Statement

If f is a real valued function defined on an interval, then with the possible exception of a set of measure 0 on the interval, the Dini derivatives of f satisfy one of the following four conditions at each point:

  • f has a finite derivative
  • D+f = D–f is finite, D−f = ∞, D+f = –∞.
  • D−f = D+f is finite, D+f = ∞, D–f = –∞.
  • D−f = D+f = ∞, D–f = D+f = –∞.

References

  • Bruckner, Andrew M. (1978), Differentiation of real functions, Lecture Notes in Mathematics, vol. 659, Berlin, New York: Springer-Verlag, doi: 10.1007/BFb0069821, ISBN  978-3-540-08910-0, MR  0507448
  • Saks, StanisÅ‚aw (1937), Theory of the Integral, Monografie Matematyczne, vol. 7 (2nd ed.), Warszawa- Lwów: G.E. Stechert & Co., JFM  63.0183.05, Zbl  0017.30004, archived from the original on 2006-12-12
  • Young, Grace Chisholm (1917), "On the Derivates of a Function" (PDF), Proc. London Math. Soc., 15 (1): 360–384, doi: 10.1112/plms/s2-15.1.360
From Wikipedia, the free encyclopedia

In mathematics, the Denjoy–Young–Saks theorem gives some possibilities for the Dini derivatives of a function that hold almost everywhere. Denjoy ( 1915) proved the theorem for continuous functions, Young ( 1917) extended it to measurable functions, and Saks ( 1924) extended it to arbitrary functions. Saks (1937, Chapter IX, section 4) and Bruckner (1978, chapter IV, theorem 4.4) give historical accounts of the theorem.

Statement

If f is a real valued function defined on an interval, then with the possible exception of a set of measure 0 on the interval, the Dini derivatives of f satisfy one of the following four conditions at each point:

  • f has a finite derivative
  • D+f = D–f is finite, D−f = ∞, D+f = –∞.
  • D−f = D+f is finite, D+f = ∞, D–f = –∞.
  • D−f = D+f = ∞, D–f = D+f = –∞.

References

  • Bruckner, Andrew M. (1978), Differentiation of real functions, Lecture Notes in Mathematics, vol. 659, Berlin, New York: Springer-Verlag, doi: 10.1007/BFb0069821, ISBN  978-3-540-08910-0, MR  0507448
  • Saks, StanisÅ‚aw (1937), Theory of the Integral, Monografie Matematyczne, vol. 7 (2nd ed.), Warszawa- Lwów: G.E. Stechert & Co., JFM  63.0183.05, Zbl  0017.30004, archived from the original on 2006-12-12
  • Young, Grace Chisholm (1917), "On the Derivates of a Function" (PDF), Proc. London Math. Soc., 15 (1): 360–384, doi: 10.1112/plms/s2-15.1.360

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook