From Wikipedia, the free encyclopedia
Debromomarinone
Names
Preferred IUPAC name
(4aR,5S,12bS)-8,10-Dihydroxy-2,5-dimethyl-5-(4-methylpent-3-en-1-yl)-3,4a,5,12b-tetrahydro-4H-naphtho[2,3-c][2]benzopyran-7,12-dione
Identifiers
3D model ( JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C25H28O5/c1-13(2)6-5-9-25(4)18-8-7-14(3)10-16(18)21-22(28)17-11-15(26)12-19(27)20(17)23(29)24(21)30-25/h6,10-12,16,18,26-27H,5,7-9H2,1-4H3/t16-,18+,25-/m0/s1
    Key: DPALYVVGGATILJ-UVNWJPITSA-N
  • O=C2C=1O[C@@]([C@H]4[C@@H](C=1C(=O)c3cc(O)cc(O)c23)/C=C(\CC4)C)(C)CC\C=C(/C)C
Properties
C25H28O5
Molar mass 408.494 g·mol−1
Related compounds
Related compounds
Marinone
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Debromomarinone is a chemical compound isolated from marine actinomycetes. [2]

Biosynthesis

The proposed biosynthesis of marinone was first reported by Murray et al. in 2018. [3] The biosynthesis of marinone begins with 1,3,6,8-tetrahydroxynaphthalene (THN), which is known to be biosynthesized via the condensation of five malonyl-coenzyme A units followed by the aromatization of the resulting pentaketide using a type III polyketide synthase. [4] Next, THN undergoes geranylation or farnesylation at the C-4 position, yielding 1 (Fig. 1). This transformation is catalyzed in vivo by NphB aromatic prenyltransferase in naphterpin biosynthesis [5] or by CnqP3 or CnqP4 in marinone biosynthesis. [6] Then, 1 undergoes oxidative dearomatization which is catalyzed by VCPO, which is a vanadium-dependent chloroperoxidase enzyme. This transformation yields compound 2. Compound 2 then undergoes two consecutive chlorinations at the C2 position, catalyzed by VCPO, to yield 4. Next, a VCPO catalyzed α-hydroxyketone rearrangement shifts the geranyl substituent from C-4 to C-3, yielding 5. Exposure of 5 to mildly basic conditions induces cyclization to yield the α-chloroepoxide, 6. This is followed by the reductive halogenation of the α-chloroepoxide to yield the hydroxynaphthoquinone, 7. Next, oxidation at the C-2 position and facile E/Z isomerization of the double bond affords the enone, 8, which undergoes a intramolecular hetero-Diels-Alder to yield debromomarinone.

Proposed biosynthetic pathway of debromomarinine and marinone [3]

References

  1. ^ Buckingham, John (7 December 1995). Dictionary of Natural Products, Supplement 2. CRC Press. p. 587. ISBN  978-0-412-60420-1.
  2. ^ Mikhaĭlov, V. V.; Kuznetsova, T. A.; Eliakov, G. B. (1995). "Bioactive compounds from marine actinomycetes". Bioorganicheskaia Khimiia. 21 (1): 3–8. PMID  7710421.
  3. ^ a b Murray LA, McKinnie SM, Pepper HP, Erni R, Miles ZD, Cruickshank MC, et al. (August 2018). "Total Synthesis Establishes the Biosynthetic Pathway to the Naphterpin and Marinone Natural Products". Angewandte Chemie. 57 (34): 11009–11014. doi: 10.1002/anie.201804351. PMC  6248334. PMID  29935040.
  4. ^ Shen X, Wang X, Huang T, Deng Z, Lin S (August 2020). "Naphthoquinone-Based Meroterpenoids from Marine-Derived Streptomyces sp. B9173". Biomolecules. 10 (8): 1187. doi: 10.3390/biom10081187. PMC  7463872. PMID  32824158.
  5. ^ Kuzuyama T, Noel JP, Richard SB (June 2005). "Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products". Nature. 435 (7044): 983–987. Bibcode: 2005Natur.435..983K. doi: 10.1038/nature03668. PMC  2874460. PMID  15959519.
  6. ^ Motohashi K, Irie K, Toda T, Matsuo Y, Kasai H, Sue M, et al. (February 2008). "Studies on terpenoids produced by actinomycetes. 5-dimethylallylindole-3-carboxylic Acid and A80915G-8"-acid produced by marine-derived Streptomyces sp. MS239". The Journal of Antibiotics. 61 (2): 75–80. doi: 10.1038/ja.2008.113. PMID  18408326. S2CID  29628302.
From Wikipedia, the free encyclopedia
Debromomarinone
Names
Preferred IUPAC name
(4aR,5S,12bS)-8,10-Dihydroxy-2,5-dimethyl-5-(4-methylpent-3-en-1-yl)-3,4a,5,12b-tetrahydro-4H-naphtho[2,3-c][2]benzopyran-7,12-dione
Identifiers
3D model ( JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C25H28O5/c1-13(2)6-5-9-25(4)18-8-7-14(3)10-16(18)21-22(28)17-11-15(26)12-19(27)20(17)23(29)24(21)30-25/h6,10-12,16,18,26-27H,5,7-9H2,1-4H3/t16-,18+,25-/m0/s1
    Key: DPALYVVGGATILJ-UVNWJPITSA-N
  • O=C2C=1O[C@@]([C@H]4[C@@H](C=1C(=O)c3cc(O)cc(O)c23)/C=C(\CC4)C)(C)CC\C=C(/C)C
Properties
C25H28O5
Molar mass 408.494 g·mol−1
Related compounds
Related compounds
Marinone
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Debromomarinone is a chemical compound isolated from marine actinomycetes. [2]

Biosynthesis

The proposed biosynthesis of marinone was first reported by Murray et al. in 2018. [3] The biosynthesis of marinone begins with 1,3,6,8-tetrahydroxynaphthalene (THN), which is known to be biosynthesized via the condensation of five malonyl-coenzyme A units followed by the aromatization of the resulting pentaketide using a type III polyketide synthase. [4] Next, THN undergoes geranylation or farnesylation at the C-4 position, yielding 1 (Fig. 1). This transformation is catalyzed in vivo by NphB aromatic prenyltransferase in naphterpin biosynthesis [5] or by CnqP3 or CnqP4 in marinone biosynthesis. [6] Then, 1 undergoes oxidative dearomatization which is catalyzed by VCPO, which is a vanadium-dependent chloroperoxidase enzyme. This transformation yields compound 2. Compound 2 then undergoes two consecutive chlorinations at the C2 position, catalyzed by VCPO, to yield 4. Next, a VCPO catalyzed α-hydroxyketone rearrangement shifts the geranyl substituent from C-4 to C-3, yielding 5. Exposure of 5 to mildly basic conditions induces cyclization to yield the α-chloroepoxide, 6. This is followed by the reductive halogenation of the α-chloroepoxide to yield the hydroxynaphthoquinone, 7. Next, oxidation at the C-2 position and facile E/Z isomerization of the double bond affords the enone, 8, which undergoes a intramolecular hetero-Diels-Alder to yield debromomarinone.

Proposed biosynthetic pathway of debromomarinine and marinone [3]

References

  1. ^ Buckingham, John (7 December 1995). Dictionary of Natural Products, Supplement 2. CRC Press. p. 587. ISBN  978-0-412-60420-1.
  2. ^ Mikhaĭlov, V. V.; Kuznetsova, T. A.; Eliakov, G. B. (1995). "Bioactive compounds from marine actinomycetes". Bioorganicheskaia Khimiia. 21 (1): 3–8. PMID  7710421.
  3. ^ a b Murray LA, McKinnie SM, Pepper HP, Erni R, Miles ZD, Cruickshank MC, et al. (August 2018). "Total Synthesis Establishes the Biosynthetic Pathway to the Naphterpin and Marinone Natural Products". Angewandte Chemie. 57 (34): 11009–11014. doi: 10.1002/anie.201804351. PMC  6248334. PMID  29935040.
  4. ^ Shen X, Wang X, Huang T, Deng Z, Lin S (August 2020). "Naphthoquinone-Based Meroterpenoids from Marine-Derived Streptomyces sp. B9173". Biomolecules. 10 (8): 1187. doi: 10.3390/biom10081187. PMC  7463872. PMID  32824158.
  5. ^ Kuzuyama T, Noel JP, Richard SB (June 2005). "Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products". Nature. 435 (7044): 983–987. Bibcode: 2005Natur.435..983K. doi: 10.1038/nature03668. PMC  2874460. PMID  15959519.
  6. ^ Motohashi K, Irie K, Toda T, Matsuo Y, Kasai H, Sue M, et al. (February 2008). "Studies on terpenoids produced by actinomycetes. 5-dimethylallylindole-3-carboxylic Acid and A80915G-8"-acid produced by marine-derived Streptomyces sp. MS239". The Journal of Antibiotics. 61 (2): 75–80. doi: 10.1038/ja.2008.113. PMID  18408326. S2CID  29628302.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook