From Wikipedia, the free encyclopedia

In mathematics, crystals are Cartesian sections of certain fibered categories. They were introduced by Alexander Grothendieck ( 1966a), who named them crystals because in some sense they are "rigid" and "grow". In particular quasicoherent crystals over the crystalline site are analogous to quasicoherent modules over a scheme.

An isocrystal is a crystal up to isogeny. They are -adic analogues of -adic étale sheaves, introduced by Grothendieck (1966a) and Berthelot & Ogus (1983) (though the definition of isocrystal only appears in part II of this paper by Ogus (1984)). Convergent isocrystals are a variation of isocrystals that work better over non-perfect fields, and overconvergent isocrystals are another variation related to overconvergent cohomology theories.

A Dieudonné crystal is a crystal with Verschiebung and Frobenius maps. An F-crystal is a structure in semilinear algebra somewhat related to crystals.

Crystals over the infinitesimal and crystalline sites

The infinitesimal site has as objects the infinitesimal extensions of open sets of . If is a scheme over then the sheaf is defined by = coordinate ring of , where we write as an abbreviation for an object of . Sheaves on this site grow in the sense that they can be extended from open sets to infinitesimal extensions of open sets.

A crystal on the site is a sheaf of modules that is rigid in the following sense:

for any map between objects , ; of , the natural map from to is an isomorphism.

This is similar to the definition of a quasicoherent sheaf of modules in the Zariski topology.

An example of a crystal is the sheaf .

Crystals on the crystalline site are defined in a similar way.

Crystals in fibered categories

In general, if is a fibered category over , then a crystal is a cartesian section of the fibered category. In the special case when is the category of infinitesimal extensions of a scheme and the category of quasicoherent modules over objects of , then crystals of this fibered category are the same as crystals of the infinitesimal site.

References

  • Ogus, Arthur (1 December 1984). "F-isocrystals and de Rham cohomology II—Convergent isocrystals". Duke Mathematical Journal. 51 (4). doi: 10.1215/S0012-7094-84-05136-6.
  • Berthelot, Pierre (1974), Cohomologie cristalline des schémas de caractéristique p>0, Lecture Notes in Mathematics, Vol. 407, vol. 407, Berlin, New York: Springer-Verlag, doi: 10.1007/BFb0068636, ISBN  978-3-540-06852-5, MR  0384804
  • Berthelot, Pierre; Ogus, Arthur (1978), Notes on crystalline cohomology, Princeton University Press, ISBN  978-0-691-08218-9, MR  0491705
  • Berthelot, P.; Ogus, A. (June 1983). "F-isocrystals and de Rham cohomology. I". Inventiones Mathematicae. 72 (2): 159–199. doi: 10.1007/BF01389319.
  • Chambert-Loir, Antoine (1998), "Cohomologie cristalline: un survol", Expositiones Mathematicae, 16 (4): 333–382, ISSN  0723-0869, MR  1654786, archived from the original on 2011-07-21
  • Grothendieck, Alexander (1966a), "On the de Rham cohomology of algebraic varieties", Institut des Hautes Études Scientifiques. Publications Mathématiques, 29 (29): 95–103, doi: 10.1007/BF02684807, ISSN  0073-8301, MR  0199194 (letter to Atiyah, Oct. 14 1963)
  • Grothendieck, Alexander (1966b), Letter to J. Tate (PDF), archived from the original (PDF) on 2021-07-21
  • Grothendieck, Alexander (1968), "Crystals and the de Rham cohomology of schemes" (PDF), in Giraud, Jean; Grothendieck, Alexander; Kleiman, Steven L.; et al. (eds.), Dix Exposés sur la Cohomologie des Schémas, Advanced studies in pure mathematics, vol. 3, Amsterdam: North-Holland, pp. 306–358, MR  0269663, archived from the original (PDF) on 2022-02-08
  • Illusie, Luc (1975), "Report on crystalline cohomology", Algebraic geometry, Proc. Sympos. Pure Math., vol. 29, Providence, R.I.: Amer. Math. Soc., pp. 459–478, MR  0393034
  • Illusie, Luc (1976), "Cohomologie cristalline (d'après P. Berthelot)", Séminaire Bourbaki (1974/1975: Exposés Nos. 453-470), Exp. No. 456, Lecture Notes in Math., vol. 514, Berlin, New York: Springer-Verlag, pp. 53–60, MR  0444668, archived from the original on 2012-02-10, retrieved 2016-08-24
  • Illusie, Luc (1994), "Crystalline cohomology", Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Providence, RI: Amer. Math. Soc., pp. 43–70, MR  1265522
  • Kedlaya, Kiran S. (2009), "p-adic cohomology", in Abramovich, Dan; Bertram, A.; Katzarkov, L.; Pandharipande, Rahul; Thaddeus., M. (eds.), Algebraic geometry---Seattle 2005. Part 2, Proc. Sympos. Pure Math., vol. 80, Providence, R.I.: Amer. Math. Soc., pp. 667–684, arXiv: math/0601507, Bibcode: 2006math......1507K, ISBN  978-0-8218-4703-9, MR  2483951
From Wikipedia, the free encyclopedia

In mathematics, crystals are Cartesian sections of certain fibered categories. They were introduced by Alexander Grothendieck ( 1966a), who named them crystals because in some sense they are "rigid" and "grow". In particular quasicoherent crystals over the crystalline site are analogous to quasicoherent modules over a scheme.

An isocrystal is a crystal up to isogeny. They are -adic analogues of -adic étale sheaves, introduced by Grothendieck (1966a) and Berthelot & Ogus (1983) (though the definition of isocrystal only appears in part II of this paper by Ogus (1984)). Convergent isocrystals are a variation of isocrystals that work better over non-perfect fields, and overconvergent isocrystals are another variation related to overconvergent cohomology theories.

A Dieudonné crystal is a crystal with Verschiebung and Frobenius maps. An F-crystal is a structure in semilinear algebra somewhat related to crystals.

Crystals over the infinitesimal and crystalline sites

The infinitesimal site has as objects the infinitesimal extensions of open sets of . If is a scheme over then the sheaf is defined by = coordinate ring of , where we write as an abbreviation for an object of . Sheaves on this site grow in the sense that they can be extended from open sets to infinitesimal extensions of open sets.

A crystal on the site is a sheaf of modules that is rigid in the following sense:

for any map between objects , ; of , the natural map from to is an isomorphism.

This is similar to the definition of a quasicoherent sheaf of modules in the Zariski topology.

An example of a crystal is the sheaf .

Crystals on the crystalline site are defined in a similar way.

Crystals in fibered categories

In general, if is a fibered category over , then a crystal is a cartesian section of the fibered category. In the special case when is the category of infinitesimal extensions of a scheme and the category of quasicoherent modules over objects of , then crystals of this fibered category are the same as crystals of the infinitesimal site.

References

  • Ogus, Arthur (1 December 1984). "F-isocrystals and de Rham cohomology II—Convergent isocrystals". Duke Mathematical Journal. 51 (4). doi: 10.1215/S0012-7094-84-05136-6.
  • Berthelot, Pierre (1974), Cohomologie cristalline des schémas de caractéristique p>0, Lecture Notes in Mathematics, Vol. 407, vol. 407, Berlin, New York: Springer-Verlag, doi: 10.1007/BFb0068636, ISBN  978-3-540-06852-5, MR  0384804
  • Berthelot, Pierre; Ogus, Arthur (1978), Notes on crystalline cohomology, Princeton University Press, ISBN  978-0-691-08218-9, MR  0491705
  • Berthelot, P.; Ogus, A. (June 1983). "F-isocrystals and de Rham cohomology. I". Inventiones Mathematicae. 72 (2): 159–199. doi: 10.1007/BF01389319.
  • Chambert-Loir, Antoine (1998), "Cohomologie cristalline: un survol", Expositiones Mathematicae, 16 (4): 333–382, ISSN  0723-0869, MR  1654786, archived from the original on 2011-07-21
  • Grothendieck, Alexander (1966a), "On the de Rham cohomology of algebraic varieties", Institut des Hautes Études Scientifiques. Publications Mathématiques, 29 (29): 95–103, doi: 10.1007/BF02684807, ISSN  0073-8301, MR  0199194 (letter to Atiyah, Oct. 14 1963)
  • Grothendieck, Alexander (1966b), Letter to J. Tate (PDF), archived from the original (PDF) on 2021-07-21
  • Grothendieck, Alexander (1968), "Crystals and the de Rham cohomology of schemes" (PDF), in Giraud, Jean; Grothendieck, Alexander; Kleiman, Steven L.; et al. (eds.), Dix Exposés sur la Cohomologie des Schémas, Advanced studies in pure mathematics, vol. 3, Amsterdam: North-Holland, pp. 306–358, MR  0269663, archived from the original (PDF) on 2022-02-08
  • Illusie, Luc (1975), "Report on crystalline cohomology", Algebraic geometry, Proc. Sympos. Pure Math., vol. 29, Providence, R.I.: Amer. Math. Soc., pp. 459–478, MR  0393034
  • Illusie, Luc (1976), "Cohomologie cristalline (d'après P. Berthelot)", Séminaire Bourbaki (1974/1975: Exposés Nos. 453-470), Exp. No. 456, Lecture Notes in Math., vol. 514, Berlin, New York: Springer-Verlag, pp. 53–60, MR  0444668, archived from the original on 2012-02-10, retrieved 2016-08-24
  • Illusie, Luc (1994), "Crystalline cohomology", Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Providence, RI: Amer. Math. Soc., pp. 43–70, MR  1265522
  • Kedlaya, Kiran S. (2009), "p-adic cohomology", in Abramovich, Dan; Bertram, A.; Katzarkov, L.; Pandharipande, Rahul; Thaddeus., M. (eds.), Algebraic geometry---Seattle 2005. Part 2, Proc. Sympos. Pure Math., vol. 80, Providence, R.I.: Amer. Math. Soc., pp. 667–684, arXiv: math/0601507, Bibcode: 2006math......1507K, ISBN  978-0-8218-4703-9, MR  2483951

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook