From Wikipedia, the free encyclopedia
Coordinate surfaces of the conical coordinates. The constants b and c were chosen as 1 and 2, respectively. The red sphere represents r = 2, the blue elliptic cone aligned with the vertical z-axis represents μ=cosh(1) and the yellow elliptic cone aligned with the (green) x-axis corresponds to ν2 = 2/3. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.26, -0.78, 1.34). The elliptic cones intersect the sphere in spherical conics.

Conical coordinates, sometimes called sphero-conal or sphero-conical coordinates, are a three-dimensional orthogonal coordinate system consisting of concentric spheres (described by their radius r) and by two families of perpendicular elliptic cones, aligned along the z- and x-axes, respectively. The intersection between one of the cones and the sphere forms a spherical conic.

Basic definitions

The conical coordinates are defined by

with the following limitations on the coordinates

Surfaces of constant r are spheres of that radius centered on the origin

whereas surfaces of constant and are mutually perpendicular cones

and

In this coordinate system, both Laplace's equation and the Helmholtz equation are separable.

Scale factors

The scale factor for the radius r is one (hr = 1), as in spherical coordinates. The scale factors for the two conical coordinates are

and

References

Bibliography

  • Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 659. ISBN  0-07-043316-X. LCCN  52011515.
  • Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp.  183–184. LCCN  55010911.
  • Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 179. LCCN  59014456. ASIN B0000CKZX7.
  • Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. pp. 991–100. LCCN  67025285.
  • Arfken G (1970). Mathematical Methods for Physicists (2nd ed.). Orlando, FL: Academic Press. pp. 118–119. ASIN B000MBRNX4.
  • Moon P, Spencer DE (1988). "Conical Coordinates (r, θ, λ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer-Verlag. pp. 37–40 (Table 1.09). ISBN  978-0-387-18430-2.

External links

From Wikipedia, the free encyclopedia
Coordinate surfaces of the conical coordinates. The constants b and c were chosen as 1 and 2, respectively. The red sphere represents r = 2, the blue elliptic cone aligned with the vertical z-axis represents μ=cosh(1) and the yellow elliptic cone aligned with the (green) x-axis corresponds to ν2 = 2/3. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.26, -0.78, 1.34). The elliptic cones intersect the sphere in spherical conics.

Conical coordinates, sometimes called sphero-conal or sphero-conical coordinates, are a three-dimensional orthogonal coordinate system consisting of concentric spheres (described by their radius r) and by two families of perpendicular elliptic cones, aligned along the z- and x-axes, respectively. The intersection between one of the cones and the sphere forms a spherical conic.

Basic definitions

The conical coordinates are defined by

with the following limitations on the coordinates

Surfaces of constant r are spheres of that radius centered on the origin

whereas surfaces of constant and are mutually perpendicular cones

and

In this coordinate system, both Laplace's equation and the Helmholtz equation are separable.

Scale factors

The scale factor for the radius r is one (hr = 1), as in spherical coordinates. The scale factors for the two conical coordinates are

and

References

Bibliography

  • Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 659. ISBN  0-07-043316-X. LCCN  52011515.
  • Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp.  183–184. LCCN  55010911.
  • Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 179. LCCN  59014456. ASIN B0000CKZX7.
  • Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. pp. 991–100. LCCN  67025285.
  • Arfken G (1970). Mathematical Methods for Physicists (2nd ed.). Orlando, FL: Academic Press. pp. 118–119. ASIN B000MBRNX4.
  • Moon P, Spencer DE (1988). "Conical Coordinates (r, θ, λ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer-Verlag. pp. 37–40 (Table 1.09). ISBN  978-0-387-18430-2.

External links


Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook