From Wikipedia, the free encyclopedia

Butyrolactol A
Names
IUPAC name
3,4-Dihydroxy-5-[(8E,10E,14Z,16E)-1,2,3,4,5-Pentahydroxy-6,20,20-trimethylhenicosa-8,10,14,16-tetraenyl]oxolan-2-one
Identifiers
3D model ( JSmol)
PubChem CID
  • CC(C/C=C/C=C/CC/C=C\C=C\CCC(C)(C)C)C(C(C(C(C(C1C(C(C(=O)O1)O)O)O)O)O)O)O
Properties
C28H46O9
Molar mass 526.667 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Butyrolactol A is an organic chemical compound of interest for its potential use as an antifungal antibiotic.

One of a number of potentially useful substances derived from the bacteria Streptomyces rochei, it demonstrates broad antimicrobial activity against fungi, including Candida albicans. [1] [2] Butyrolactol A is a polyketide featuring a tert-butyl group linked to a long hydrophobic carbon chain followed by 8 polyol groups. Research has shown that, using isotopic labeling of media and spectroscopic techniques to identify precursor products which are eventually incorporated into the final product, it can be created via a biosynthetic pathway. [3] Further analysis of gene clusters encoding for biosynthetic enzymes confirmed the presence of polyketide synthesizing genes that are involved with the aforementioned pathways for this molecule.

Biosynthesis

Acetate pathway

The long carbon chain contained in Butyrolactol A was determined to originate from the acetate pathway by carbon-14 labeling acetate, the two carbon precursor for polyketide synthase. [4] The presence of PKS genes from the Streptomyces family further confirmed the mechanism of acetyl-group based chain elongation. Carbons 1-8 were confirmed to originate from glycolytic pathway intermediate hydroxymalonyl-ACP (Figure). This is supported by 13C labeling, where 13C-13C couplets were present for the aforementioned carbons, as well as gene sequencing, which found genes coding for enzymes involved in hydroxymalonyl-ACP formation in zwittermicin biosynthesis. [5]

tert-Butyl group

The tert-butyl functional group is a unique moiety in this compound: two of the three carbons were found to originate from the amino acid valine, which contains an isopropyl alkyl side chain. This was determined by deuteration of valine supplied in the media, where mass spectroscopy identified mass/charge ratio reflecting the replacement of 8 hydrogens with deuterium in valine. The final alkyl group in the tert-butyl group was found to be from methionine, likely from SAM. The order in which these precursor units are synthesized has not been confirmed. [3]

The biosynthetic pathway for butyrolactol A

References

  1. ^ Kotake, C.; Yamasaki, T.; Moriyama, T.; Shinoda, M.; Komiyama, N.; Furumai, T.; Konishi, M.; Oki, T. (September 1992). "Butyrolactols A and B, new antifungal antibiotics. Taxonomy, isolation, physico-chemical properties, structure and biological activity". The Journal of Antibiotics. 45 (9): 1442–1450. doi: 10.7164/antibiotics.45.1442. ISSN  0021-8820. PMID  1429230.
  2. ^ Komaki, Hisayuki; Sakurai, Kenta; Hosoyama, Akira; Kimura, Akane; Igarashi, Yasuhiro; Tamura, Tomohiko (2 May 2018). "Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains". Scientific Reports. 8 (1): 6888. Bibcode: 2018NatSR...8.6888K. doi: 10.1038/s41598-018-24921-y. ISSN  2045-2322. PMC  5932044. PMID  29720592.
  3. ^ a b Harunari, Enjuro; Komaki, Hisayuki; Igarashi, Yasuhiro (8 March 2017). "Biosynthetic origin of butyrolactol A, an antifungal polyketide produced by a marine-derived Streptomyces". Beilstein Journal of Organic Chemistry. 13 (1): 441–450. doi: 10.3762/bjoc.13.47. ISSN  1860-5397. PMC  5355916. PMID  28382182.
  4. ^ "The Acetate Pathway: Fatty Acids and Polyketides". Medicinal Natural Products. Chichester, UK: John Wiley & Sons, Ltd. 2001. pp. 35–120. doi: 10.1002/0470846275.ch3. ISBN  978-0-471-49640-3.
  5. ^ Park, Hyunjun; Kevany, Brian M.; Dyer, David H.; Thomas, Michael G.; Forest, Katrina T. (23 October 2014). "A Polyketide Synthase Acyltransferase Domain Structure Suggests a Recognition Mechanism for Its Hydroxymalonyl-Acyl Carrier Protein Substrate". PLOS ONE. 9 (10): e110965. Bibcode: 2014PLoSO...9k0965P. doi: 10.1371/journal.pone.0110965. ISSN  1932-6203. PMC  4207774. PMID  25340352.
From Wikipedia, the free encyclopedia

Butyrolactol A
Names
IUPAC name
3,4-Dihydroxy-5-[(8E,10E,14Z,16E)-1,2,3,4,5-Pentahydroxy-6,20,20-trimethylhenicosa-8,10,14,16-tetraenyl]oxolan-2-one
Identifiers
3D model ( JSmol)
PubChem CID
  • CC(C/C=C/C=C/CC/C=C\C=C\CCC(C)(C)C)C(C(C(C(C(C1C(C(C(=O)O1)O)O)O)O)O)O)O
Properties
C28H46O9
Molar mass 526.667 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Butyrolactol A is an organic chemical compound of interest for its potential use as an antifungal antibiotic.

One of a number of potentially useful substances derived from the bacteria Streptomyces rochei, it demonstrates broad antimicrobial activity against fungi, including Candida albicans. [1] [2] Butyrolactol A is a polyketide featuring a tert-butyl group linked to a long hydrophobic carbon chain followed by 8 polyol groups. Research has shown that, using isotopic labeling of media and spectroscopic techniques to identify precursor products which are eventually incorporated into the final product, it can be created via a biosynthetic pathway. [3] Further analysis of gene clusters encoding for biosynthetic enzymes confirmed the presence of polyketide synthesizing genes that are involved with the aforementioned pathways for this molecule.

Biosynthesis

Acetate pathway

The long carbon chain contained in Butyrolactol A was determined to originate from the acetate pathway by carbon-14 labeling acetate, the two carbon precursor for polyketide synthase. [4] The presence of PKS genes from the Streptomyces family further confirmed the mechanism of acetyl-group based chain elongation. Carbons 1-8 were confirmed to originate from glycolytic pathway intermediate hydroxymalonyl-ACP (Figure). This is supported by 13C labeling, where 13C-13C couplets were present for the aforementioned carbons, as well as gene sequencing, which found genes coding for enzymes involved in hydroxymalonyl-ACP formation in zwittermicin biosynthesis. [5]

tert-Butyl group

The tert-butyl functional group is a unique moiety in this compound: two of the three carbons were found to originate from the amino acid valine, which contains an isopropyl alkyl side chain. This was determined by deuteration of valine supplied in the media, where mass spectroscopy identified mass/charge ratio reflecting the replacement of 8 hydrogens with deuterium in valine. The final alkyl group in the tert-butyl group was found to be from methionine, likely from SAM. The order in which these precursor units are synthesized has not been confirmed. [3]

The biosynthetic pathway for butyrolactol A

References

  1. ^ Kotake, C.; Yamasaki, T.; Moriyama, T.; Shinoda, M.; Komiyama, N.; Furumai, T.; Konishi, M.; Oki, T. (September 1992). "Butyrolactols A and B, new antifungal antibiotics. Taxonomy, isolation, physico-chemical properties, structure and biological activity". The Journal of Antibiotics. 45 (9): 1442–1450. doi: 10.7164/antibiotics.45.1442. ISSN  0021-8820. PMID  1429230.
  2. ^ Komaki, Hisayuki; Sakurai, Kenta; Hosoyama, Akira; Kimura, Akane; Igarashi, Yasuhiro; Tamura, Tomohiko (2 May 2018). "Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains". Scientific Reports. 8 (1): 6888. Bibcode: 2018NatSR...8.6888K. doi: 10.1038/s41598-018-24921-y. ISSN  2045-2322. PMC  5932044. PMID  29720592.
  3. ^ a b Harunari, Enjuro; Komaki, Hisayuki; Igarashi, Yasuhiro (8 March 2017). "Biosynthetic origin of butyrolactol A, an antifungal polyketide produced by a marine-derived Streptomyces". Beilstein Journal of Organic Chemistry. 13 (1): 441–450. doi: 10.3762/bjoc.13.47. ISSN  1860-5397. PMC  5355916. PMID  28382182.
  4. ^ "The Acetate Pathway: Fatty Acids and Polyketides". Medicinal Natural Products. Chichester, UK: John Wiley & Sons, Ltd. 2001. pp. 35–120. doi: 10.1002/0470846275.ch3. ISBN  978-0-471-49640-3.
  5. ^ Park, Hyunjun; Kevany, Brian M.; Dyer, David H.; Thomas, Michael G.; Forest, Katrina T. (23 October 2014). "A Polyketide Synthase Acyltransferase Domain Structure Suggests a Recognition Mechanism for Its Hydroxymalonyl-Acyl Carrier Protein Substrate". PLOS ONE. 9 (10): e110965. Bibcode: 2014PLoSO...9k0965P. doi: 10.1371/journal.pone.0110965. ISSN  1932-6203. PMC  4207774. PMID  25340352.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook