From Wikipedia, the free encyclopedia
Short-rate tree calibration under BDT:

Step 0. Set the risk-neutral probability of an up move, p, to 50%
Step 1. For each input spot rate, iteratively:

  • adjust the rate at the top-most node at the current time-step, i;
  • find all other rates in the time-step, where these are linked to the node immediately above (ru; rd being the node in question) via (this node-spacing being consistent with p = 50%; Δt being the length of the time-step);
  • discount recursively through the tree using the rate at each node, i.e. via "backwards induction", from the time-step in question to the first node in the tree (i.e. i=0);
  • repeat until the discounted value at the first node in the tree equals the zero-price corresponding to the given spot interest rate for the i-th time-step.

Step 2. Once solved, retain these known short rates, and proceed to the next time-step (i.e. input spot-rate), "growing" the tree until it incorporates the full input yield-curve.

In mathematical finance, the Black–Derman–Toy model (BDT) is a popular short-rate model used in the pricing of bond options, swaptions and other interest rate derivatives; see Lattice model (finance) § Interest rate derivatives. It is a one-factor model; that is, a single stochastic factor—the short rate—determines the future evolution of all interest rates. It was the first model to combine the mean-reverting behaviour of the short rate with the log-normal distribution, [1] and is still widely used. [2] [3]

History

The model was introduced by Fischer Black, Emanuel Derman, and Bill Toy. It was first developed for in-house use by Goldman Sachs in the 1980s and was published in the Financial Analysts Journal in 1990. A personal account of the development of the model is provided in Emanuel Derman's memoir My Life as a Quant. [4]

Formulae

Under BDT, using a binomial lattice, one calibrates the model parameters to fit both the current term structure of interest rates ( yield curve), and the volatility structure for interest rate caps (usually as implied by the Black-76-prices for each component caplet); see aside. Using the calibrated lattice one can then value a variety of more complex interest-rate sensitive securities and interest rate derivatives.

Although initially developed for a lattice-based environment, the model has been shown to imply the following continuous stochastic differential equation: [1] [5]

where,
= the instantaneous short rate at time t
= value of the underlying asset at option expiry
= instant short rate volatility
= a standard Brownian motion under a risk-neutral probability measure; its differential.

For constant (time independent) short rate volatility, , the model is:

One reason that the model remains popular, is that the "standard" Root-finding algorithms—such as Newton's method (the secant method) or bisection—are very easily applied to the calibration. [6] Relatedly, the model was originally described in algorithmic language, and not using stochastic calculus or martingales. [7]

References

Notes

  1. ^ a b "Impact of Different Interest Rate Models on Bond Value Measures, G, Buetow et al" (PDF). Archived from the original (PDF) on 2011-10-07. Retrieved 2011-07-21.
  2. ^ Fixed Income Analysis, p. 410, at Google Books
  3. ^ "Society of Actuaries Professional Actuarial Specialty Guide Asset-Liability Management" (PDF). soa.org. Retrieved 19 March 2024.
  4. ^ "My Life as a Quant: Reflections on Physics and Finance". Archived from the original on 2010-03-28. Retrieved 2010-04-26.
  5. ^ "Black-Derman-Toy (BDT)". Archived from the original on 2016-05-24. Retrieved 2010-06-14.
  6. ^ Phelim Boyle, Ken Seng Tan and Weidong Tian (2001). Calibrating the Black–Derman-Toy model: some theoretical results, Applied Mathematical Finance 8, 27– 48 (2001)
  7. ^ "One on One Interview with Emanuel Derman (Financial Engineering News)". Retrieved 2021-06-09.

Articles

External links

From Wikipedia, the free encyclopedia
Short-rate tree calibration under BDT:

Step 0. Set the risk-neutral probability of an up move, p, to 50%
Step 1. For each input spot rate, iteratively:

  • adjust the rate at the top-most node at the current time-step, i;
  • find all other rates in the time-step, where these are linked to the node immediately above (ru; rd being the node in question) via (this node-spacing being consistent with p = 50%; Δt being the length of the time-step);
  • discount recursively through the tree using the rate at each node, i.e. via "backwards induction", from the time-step in question to the first node in the tree (i.e. i=0);
  • repeat until the discounted value at the first node in the tree equals the zero-price corresponding to the given spot interest rate for the i-th time-step.

Step 2. Once solved, retain these known short rates, and proceed to the next time-step (i.e. input spot-rate), "growing" the tree until it incorporates the full input yield-curve.

In mathematical finance, the Black–Derman–Toy model (BDT) is a popular short-rate model used in the pricing of bond options, swaptions and other interest rate derivatives; see Lattice model (finance) § Interest rate derivatives. It is a one-factor model; that is, a single stochastic factor—the short rate—determines the future evolution of all interest rates. It was the first model to combine the mean-reverting behaviour of the short rate with the log-normal distribution, [1] and is still widely used. [2] [3]

History

The model was introduced by Fischer Black, Emanuel Derman, and Bill Toy. It was first developed for in-house use by Goldman Sachs in the 1980s and was published in the Financial Analysts Journal in 1990. A personal account of the development of the model is provided in Emanuel Derman's memoir My Life as a Quant. [4]

Formulae

Under BDT, using a binomial lattice, one calibrates the model parameters to fit both the current term structure of interest rates ( yield curve), and the volatility structure for interest rate caps (usually as implied by the Black-76-prices for each component caplet); see aside. Using the calibrated lattice one can then value a variety of more complex interest-rate sensitive securities and interest rate derivatives.

Although initially developed for a lattice-based environment, the model has been shown to imply the following continuous stochastic differential equation: [1] [5]

where,
= the instantaneous short rate at time t
= value of the underlying asset at option expiry
= instant short rate volatility
= a standard Brownian motion under a risk-neutral probability measure; its differential.

For constant (time independent) short rate volatility, , the model is:

One reason that the model remains popular, is that the "standard" Root-finding algorithms—such as Newton's method (the secant method) or bisection—are very easily applied to the calibration. [6] Relatedly, the model was originally described in algorithmic language, and not using stochastic calculus or martingales. [7]

References

Notes

  1. ^ a b "Impact of Different Interest Rate Models on Bond Value Measures, G, Buetow et al" (PDF). Archived from the original (PDF) on 2011-10-07. Retrieved 2011-07-21.
  2. ^ Fixed Income Analysis, p. 410, at Google Books
  3. ^ "Society of Actuaries Professional Actuarial Specialty Guide Asset-Liability Management" (PDF). soa.org. Retrieved 19 March 2024.
  4. ^ "My Life as a Quant: Reflections on Physics and Finance". Archived from the original on 2010-03-28. Retrieved 2010-04-26.
  5. ^ "Black-Derman-Toy (BDT)". Archived from the original on 2016-05-24. Retrieved 2010-06-14.
  6. ^ Phelim Boyle, Ken Seng Tan and Weidong Tian (2001). Calibrating the Black–Derman-Toy model: some theoretical results, Applied Mathematical Finance 8, 27– 48 (2001)
  7. ^ "One on One Interview with Emanuel Derman (Financial Engineering News)". Retrieved 2021-06-09.

Articles

External links


Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook