From Wikipedia, the free encyclopedia
(Redirected from Aubin-Lions theorem)

In mathematics, the Aubin–Lions lemma (or theorem) is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a compactness criterion that is useful in the study of nonlinear evolutionary partial differential equations. Typically, to prove the existence of solutions one first constructs approximate solutions (for example, by a Galerkin method or by mollification of the equation), then uses the compactness lemma to show that there is a convergent subsequence of approximate solutions whose limit is a solution.

The result is named after the French mathematicians Jean-Pierre Aubin and Jacques-Louis Lions. In the original proof by Aubin, [1] the spaces X0 and X1 in the statement of the lemma were assumed to be reflexive, but this assumption was removed by Simon, [2] so the result is also referred to as the Aubin–Lions–Simon lemma. [3]

Statement of the lemma

Let X0, X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Suppose that X0 is compactly embedded in X and that X is continuously embedded in X1. For , let

(i) If then the embedding of W into is compact.

(ii) If and then the embedding of W into is compact.

See also

Notes

References

  • Aubin, Jean-Pierre (1963). "Un théorème de compacité. (French)". C. R. Acad. Sci. Paris. Vol. 256. pp. 5042–5044. MR  0152860.
  • Barrett, John W.; Süli, Endre (2012). "Reflections on Dubinskii's nonlinear compact embedding theorem". Publications de l'Institut Mathématique (Belgrade). Nouvelle Série. 91 (105): 95–110. arXiv: 1101.1990. doi: 10.2298/PIM1205095B. MR  2963813. S2CID  12240189.
  • Boyer, Franck; Fabrie, Pierre (2013). Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences 183. New York: Springer. pp. 102–106. ISBN  978-1-4614-5975-0. (Theorem II.5.16)
  • Lions, J.L. (1969). Quelque methodes de résolution des problemes aux limites non linéaires. Paris: Dunod-Gauth. Vill. MR  0259693.
  • Roubíček, T. (2013). Nonlinear Partial Differential Equations with Applications (2nd ed.). Basel: Birkhäuser. ISBN  978-3-0348-0512-4. (Sect.7.3)
  • Showalter, Ralph E. (1997). Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. Providence, RI: American Mathematical Society. p. 106. ISBN  0-8218-0500-2. MR  1422252. (Proposition III.1.3)
  • Simon, J. (1986). "Compact sets in the space Lp(O,T;B)". Annali di Matematica Pura ed Applicata. 146: 65–96. doi: 10.1007/BF01762360. MR  0916688. S2CID  123568207.
  • Chen, X.; Jüngel, A.; Liu, J.-G. (2014). "A note on Aubin-Lions-Dubinskii lemmas". Acta Appl. Math. Vol. 133. pp. 33–43. MR  3255076.
From Wikipedia, the free encyclopedia
(Redirected from Aubin-Lions theorem)

In mathematics, the Aubin–Lions lemma (or theorem) is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a compactness criterion that is useful in the study of nonlinear evolutionary partial differential equations. Typically, to prove the existence of solutions one first constructs approximate solutions (for example, by a Galerkin method or by mollification of the equation), then uses the compactness lemma to show that there is a convergent subsequence of approximate solutions whose limit is a solution.

The result is named after the French mathematicians Jean-Pierre Aubin and Jacques-Louis Lions. In the original proof by Aubin, [1] the spaces X0 and X1 in the statement of the lemma were assumed to be reflexive, but this assumption was removed by Simon, [2] so the result is also referred to as the Aubin–Lions–Simon lemma. [3]

Statement of the lemma

Let X0, X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Suppose that X0 is compactly embedded in X and that X is continuously embedded in X1. For , let

(i) If then the embedding of W into is compact.

(ii) If and then the embedding of W into is compact.

See also

Notes

References

  • Aubin, Jean-Pierre (1963). "Un théorème de compacité. (French)". C. R. Acad. Sci. Paris. Vol. 256. pp. 5042–5044. MR  0152860.
  • Barrett, John W.; Süli, Endre (2012). "Reflections on Dubinskii's nonlinear compact embedding theorem". Publications de l'Institut Mathématique (Belgrade). Nouvelle Série. 91 (105): 95–110. arXiv: 1101.1990. doi: 10.2298/PIM1205095B. MR  2963813. S2CID  12240189.
  • Boyer, Franck; Fabrie, Pierre (2013). Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences 183. New York: Springer. pp. 102–106. ISBN  978-1-4614-5975-0. (Theorem II.5.16)
  • Lions, J.L. (1969). Quelque methodes de résolution des problemes aux limites non linéaires. Paris: Dunod-Gauth. Vill. MR  0259693.
  • Roubíček, T. (2013). Nonlinear Partial Differential Equations with Applications (2nd ed.). Basel: Birkhäuser. ISBN  978-3-0348-0512-4. (Sect.7.3)
  • Showalter, Ralph E. (1997). Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. Providence, RI: American Mathematical Society. p. 106. ISBN  0-8218-0500-2. MR  1422252. (Proposition III.1.3)
  • Simon, J. (1986). "Compact sets in the space Lp(O,T;B)". Annali di Matematica Pura ed Applicata. 146: 65–96. doi: 10.1007/BF01762360. MR  0916688. S2CID  123568207.
  • Chen, X.; Jüngel, A.; Liu, J.-G. (2014). "A note on Aubin-Lions-Dubinskii lemmas". Acta Appl. Math. Vol. 133. pp. 33–43. MR  3255076.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook