From Wikipedia, the free encyclopedia

In mathematics, the Aubin–Lions lemma (or theorem) is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a compactness criterion that is useful in the study of nonlinear evolutionary partial differential equations. Typically, to prove the existence of solutions one first constructs approximate solutions (for example, by a Galerkin method or by mollification of the equation), then uses the compactness lemma to show that there is a convergent subsequence of approximate solutions whose limit is a solution.

The result is named after the French mathematicians Jean-Pierre Aubin and Jacques-Louis Lions. In the original proof by Aubin, [1] the spaces X0 and X1 in the statement of the lemma were assumed to be reflexive, but this assumption was removed by Simon, [2] so the result is also referred to as the Aubin–Lions–Simon lemma. [3]

Statement of the lemma

Let X0, X and X1 be three Banach spaces with X0 âŠ† X âŠ† X1. Suppose that X0 is compactly embedded in X and that X is continuously embedded in X1. For , let

(i) If then the embedding of W into is compact.

(ii) If and then the embedding of W into is compact.

See also

Notes

References

  • Aubin, Jean-Pierre (1963). "Un thĂ©orĂšme de compacitĂ©. (French)". C. R. Acad. Sci. Paris. Vol. 256. pp. 5042–5044. MR  0152860.
  • Barrett, John W.; SĂŒli, Endre (2012). "Reflections on Dubinskii's nonlinear compact embedding theorem". Publications de l'Institut MathĂ©matique (Belgrade). Nouvelle SĂ©rie. 91 (105): 95–110. arXiv: 1101.1990. doi: 10.2298/PIM1205095B. MR  2963813. S2CID  12240189.
  • Boyer, Franck; Fabrie, Pierre (2013). Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences 183. New York: Springer. pp. 102–106. ISBN  978-1-4614-5975-0. (Theorem II.5.16)
  • Lions, J.L. (1969). Quelque methodes de rĂ©solution des problemes aux limites non linĂ©aires. Paris: Dunod-Gauth. Vill. MR  0259693.
  • Roubíček, T. (2013). Nonlinear Partial Differential Equations with Applications (2nd ed.). Basel: BirkhĂ€user. ISBN  978-3-0348-0512-4. (Sect.7.3)
  • Showalter, Ralph E. (1997). Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. Providence, RI: American Mathematical Society. p. 106. ISBN  0-8218-0500-2. MR  1422252. (Proposition III.1.3)
  • Simon, J. (1986). "Compact sets in the space Lp(O,T;B)". Annali di Matematica Pura ed Applicata. 146: 65–96. doi: 10.1007/BF01762360. MR  0916688. S2CID  123568207.
  • Chen, X.; JĂŒngel, A.; Liu, J.-G. (2014). "A note on Aubin-Lions-Dubinskii lemmas". Acta Appl. Math. Vol. 133. pp. 33–43. MR  3255076.
From Wikipedia, the free encyclopedia

In mathematics, the Aubin–Lions lemma (or theorem) is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a compactness criterion that is useful in the study of nonlinear evolutionary partial differential equations. Typically, to prove the existence of solutions one first constructs approximate solutions (for example, by a Galerkin method or by mollification of the equation), then uses the compactness lemma to show that there is a convergent subsequence of approximate solutions whose limit is a solution.

The result is named after the French mathematicians Jean-Pierre Aubin and Jacques-Louis Lions. In the original proof by Aubin, [1] the spaces X0 and X1 in the statement of the lemma were assumed to be reflexive, but this assumption was removed by Simon, [2] so the result is also referred to as the Aubin–Lions–Simon lemma. [3]

Statement of the lemma

Let X0, X and X1 be three Banach spaces with X0 âŠ† X âŠ† X1. Suppose that X0 is compactly embedded in X and that X is continuously embedded in X1. For , let

(i) If then the embedding of W into is compact.

(ii) If and then the embedding of W into is compact.

See also

Notes

References

  • Aubin, Jean-Pierre (1963). "Un thĂ©orĂšme de compacitĂ©. (French)". C. R. Acad. Sci. Paris. Vol. 256. pp. 5042–5044. MR  0152860.
  • Barrett, John W.; SĂŒli, Endre (2012). "Reflections on Dubinskii's nonlinear compact embedding theorem". Publications de l'Institut MathĂ©matique (Belgrade). Nouvelle SĂ©rie. 91 (105): 95–110. arXiv: 1101.1990. doi: 10.2298/PIM1205095B. MR  2963813. S2CID  12240189.
  • Boyer, Franck; Fabrie, Pierre (2013). Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences 183. New York: Springer. pp. 102–106. ISBN  978-1-4614-5975-0. (Theorem II.5.16)
  • Lions, J.L. (1969). Quelque methodes de rĂ©solution des problemes aux limites non linĂ©aires. Paris: Dunod-Gauth. Vill. MR  0259693.
  • Roubíček, T. (2013). Nonlinear Partial Differential Equations with Applications (2nd ed.). Basel: BirkhĂ€user. ISBN  978-3-0348-0512-4. (Sect.7.3)
  • Showalter, Ralph E. (1997). Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. Providence, RI: American Mathematical Society. p. 106. ISBN  0-8218-0500-2. MR  1422252. (Proposition III.1.3)
  • Simon, J. (1986). "Compact sets in the space Lp(O,T;B)". Annali di Matematica Pura ed Applicata. 146: 65–96. doi: 10.1007/BF01762360. MR  0916688. S2CID  123568207.
  • Chen, X.; JĂŒngel, A.; Liu, J.-G. (2014). "A note on Aubin-Lions-Dubinskii lemmas". Acta Appl. Math. Vol. 133. pp. 33–43. MR  3255076.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook