From Wikipedia, the free encyclopedia

List of years in archosaur paleontology
In science
2015
2016
2017
2018
2019
2020
2021
In paleontology
2015
2016
2017
2018
2019
2020
2021
In paleobotany
2015
2016
2017
2018
2019
2020
2021
In arthropod paleontology
2015
2016
2017
2018
2019
2020
2021
In paleoentomology
2015
2016
2017
2018
2019
2020
2021
In paleomalacology
2015
2016
2017
2018
2019
2020
2021
In paleoichthyology
2015
2016
2017
2018
2019
2020
2021
In reptile paleontology
2015
2016
2017
2018
2019
2020
2021
In mammal paleontology
2015
2016
2017
2018
2019
2020
2021

The year 2018 in archosaur paleontology was eventful. Archosaurs include the only living dinosaur group — birds — and the reptile crocodilians, plus all extinct dinosaurs, extinct crocodilian relatives, and pterosaurs. Archosaur palaeontology is the scientific study of those animals, especially as they existed before the Holocene Epoch began about 11,700 years ago. The year 2018 in paleontology included various significant developments regarding archosaurs.

This article records new taxa of fossil archosaurs of every kind that have been described during the year 2018, as well as other significant discoveries and events related to paleontology of archosaurs that occurred in the year 2018.

General research

Pseudosuchians

Research

  • A study on the jaw musculature and biomechanics of Venaticosuchus rusconii based on rediscovered cranial materials is published by Von Baczko (2018). [13]
  • Three differently sized braincases diagnosable as belonging to Parringtonia gracilis are described from the Triassic Manda Beds of Tanzania by Nesbitt et al. (2018). [14]
  • A study on the histology of osteoderms of Late Triassic aetosaurs from South America, including Aetosauroides scagliai, Aetobarbakinoides brasiliensis and Neoaetosauroides engaeus, is published by Cerda, Desojo & Scheyer (2018). [15]
  • Description of new skull material of Aetosauroides scagliai from the Santa Maria Supersequence ( Brazil) and a study on the phylogenetic relationships of this species is published by Biacchi Brust et al. (2018). [16]
  • The first known natural endocast of an aetosaur (Neoaetosauroides engaeus) is described by von Baczko, Taborda & Desojo (2018). [17]
  • Redescription of the aetosaur species Calyptosuchus wellesi is published by Parker (2018). [18]
  • A study on the anatomy of the skeleton of Coahomasuchus chathamensis and on the phylogenetic relationships of aetosaurs is published by Hoffman, Heckert & Zanno (2018). [19]
  • A restudy of the referred material of Stagonolepis robertsoni housed at the Natural History Museum, London, evaluating the utility of this material for examining the phylogenetic relationships of S. robertsoni, is published by Parker (2018). [20]
  • Description of the forelimbs of Stagonolepis olenkae and a study on the probable use of the forelimbs by members of this species is published by Dróżdż (2018). [21]
  • New information on the bonebed from the Triassic Badong Formation in Sangzhi County ( Hunan, China) preserving the majority of the known fossil material of Lotosaurus adentus is published by Hagen et al. (2018), who also reassess the provenance and age of the deposit. [22]
  • A study on the anatomy of the best-preserved skeleton of Prestosuchus chiniquensis, as well as on the phylogenetic relationships of this species, is published online by Roberto-Da-Silva et al. (2018). [23]
  • A study on the anatomy of the backbone of Poposaurus langstoni is published by Stefanic & Nesbitt (2018). [24]
  • A study on the morphology of the secondary palate in shartegosuchids, based on data from a new specimen of Shartegosuchus from the Ulan Malgait Formation ( Mongolia), is published by Dollman et al. (2018). [25]
  • Description of the braincase and the brain endocast, vasculature, inner ear, and paratympanic pneumatic cavities of Steneosaurus bollensis and Cricosaurus araucanensis is published by Herrera, Leardi & Fernández (2018). [26]
  • A skull of a member of the genus Tyrannoneustes is described from the Middle Jurassic ( Callovian) of Germany by Waskow, Grzegorczyk & Sander (2018). [27]
  • New specimen of Neuquensuchus universitas, providing new information on the skeletal anatomy of members of the species, is described from the Upper Cretaceous ( Santonian) Bajo de la Carpa Formation ( Argentina) by Lio et al. (2018). [28]
  • A redescription of the anatomy of the skull of Notosuchus terrestris is published by Barrios et al. (2018). [29]
  • A study on the anatomy of the skull of Morrinhosuchus luziae is published by Iori et al. (2018). [30]
  • A study on the anatomic structures and tooth wear related to mastication in Caipirasuchus is published by Iori & Carvalho (2018). [31]
  • A study on the taphonomy of the baurusuchid specimens (as well as non-avian theropods and titanosaur sauropod dinosaurs) from the Upper Cretaceous Bauru Group ( Brazil) is published by Bandeira et al. (2018), who argue that low diversity of known theropods in the Bauru Group might be caused by preservational biases, and does not conclusively indicate that baurusuchids outcompeted theropods as top predators in this area. [32]
  • A study on the evolution of the skull morphology of baurusuchids is published by Godoy et al. (2018). [33]
  • New baurusuchid fossils are described from the Upper Cretaceous ( Santonian) Bajo de la Carpa Formation ( Argentina) by Leardi, Pol & Gasparini (2018). [34]
  • A study on the bone microanatomy of Pepesuchus deiseae is published by Sena et al. (2018). [35]
  • Neosuchian crocodylomorph fossils are described from the Bathonian Peski locality in the Moscow Region ( Russia) by Pashchenko et al. (2018), who note the similarity of Bathonian vertebrate faunas of the Moscow Region, United Kingdom, Western Siberia and Kyrgyzstan, which they interpret as indicative of faunal homogeneity on the territory of Laurasia. [36]
  • New fossil remains of Sarcosuchus are described from the Aptian- Albian deposits of the Tataouine Basin ( Tunisia) by Dridi (2018). [37]
  • A revision of Trematochampsa taqueti and all fossil material assigned to the species is published by Meunier & Larsson (2018). [38]
  • Description of pelvic and femoral remains of allodaposuchids from the Upper Cretaceous of the Lo Hueco fossil site ( Spain) is published by de Celis, Narváez & Ortega (2018). [39]
  • Fossils of a eusuchian crocodyliform are described from the Lower Cretaceous ( Aptian) Khok Kruat Formation ( Thailand) by Kubo et al. (2018), representing the oldest record of Asian eusuchians reported so far. [40]
  • Description of a new skull of Susisuchus anatoceps from the Lower Cretaceous Crato Formation ( Brazil), providing new information on the anatomy of this species, and a study on the phylogenetic relationships of Susisuchus is published by Leite & Fortier (2018). [41]
  • A study on the taphonomic history of the holotype, paratypes and referred specimens of Isisfordia duncani is published by Syme & Salisbury (2018). [42]
  • A study on the phylogenetic relationships of Thoracosaurus, Eothoracosaurus, Eosuchus, Eogavialis and Argochampsa, evaluating whether they were closely related to the gharial, is published by Lee & Yates (2018). [43]
  • A study on the length proportion of limb elements in extant and fossil alligatoroid and crocodyloid crocodylians, as well as on the correlation of limb morphology and skull shape in these groups, is published by Iijima, Kubo & Kobayashi (2018). [44]
  • New specimen of Bottosaurus harlani is described from the Rowan Fossil Quarry, a Cretaceous–Paleogene locality in Mantua Township ( New Jersey, United States) by Cossette & Brochu (2018). [45]
  • A reassessment of the anatomy and phylogenetic relationships of Asiatosuchus nanlingensis and Eoalligator chunyii is published by Wu, Li & Wang (2018), who reinstate the latter taxon as a species distinct from the former one. [46]
  • Redescription of the holotype specimen of Mourasuchus arendsi from the Urumaco Formation of Venezuela is published online by Cidade et al. (2018). [47]
  • A study on the ontogenetic changes of the skull shape in extant caimans and its implications for the validity of the Miocene species Melanosuchus fisheri is published by Foth et al. (2018). [48]
  • A study on the histology of long bones of extant yacare caiman and fossil caimans from the Upper Miocene–Pliocene Solimões Formation (Brazil) is published online by Andrade et al. (2018). [49]
  • A study on two fossil specimens of caimans from the late Pleistocene and early Holocene of Brazil, attempting to assign the fossils’ identity to one of the extant caiman species on the basis of records of their current distribution and paleoclimatic data, is published by Eduardo et al. (2018). [50]
  • A fragment of a mandible of a member of the genus Gryposuchus is described from the Miocene (≈18 Ma) Castillo Formation ( Venezuela) by Solórzano, Núñez-Flores & Rincón (2018), representing the earliest record of the genus in South America reported so far. [51]
  • A revision of the type species of the genus Gryposuchus, G. jessei, is published by Souza et al. (2018). [52]
  • A revision of crocodilian fossils and taxa from the Calvert Cliffs ( United States) is published by Weems (2018). [53]
  • Partial crocodylian skull from the Pleistocene of Taiwan, formerly regarded as lost during World War II, is rediscovered and redescribed by Ito et al. (2018), who assign this specimen to the genus Toyotamaphimeia. [54]
  • Fossils of large crocodylians, as well as tortoise fossils with feeding traces on them, are described from the Pleistocene of Aldabra ( Seychelles) by Scheyer et al. (2018), who interpret their findings as indicating the occurrence of a predator–prey interaction between crocodylians and giant tortoises on Aldabra during the Late Pleistocene. [55]
  • Late Quaternary fossils representing a locally extinct population of the Cuban crocodile (Crocodylus rhombifer) are reported from two underwater caves in the Dominican Republic by Morgan et al. (2018). [56]
  • A new large and well-preserved specimen of Prestosuchus chiniquensis is published by Roberto-da-Silva et al. (2018). [57]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Aktiogavialis caribesi [58]

Sp. nov

Valid

Salas-Gismondi et al.

Late Miocene

Urumaco Formation

  Venezuela

Anteophthalmosuchus epikrator [59]

Sp. nov

Valid

Ristevski et al.

Early Cretaceous

Wessex Formation

  United Kingdom

A goniopholidid.

Barrosasuchus [60]

Gen. et sp. nov

Valid

Coria et al.

Late Cretaceous ( Santonian)

Bajo de la Carpa Formation

  Argentina

A peirosaurid crocodyliform. Genus includes new species B. neuquenianus. Announced in 2018; the final version of the article naming it was published in 2019.

Caipirasuchus mineirus [61]

Sp. nov

Valid

Martinelli et al.

Late Cretaceous

Adamantina Formation

  Brazil

A sphagesaurid crocodyliform.

Dadagavialis [58]

Gen. et sp. nov

Valid

Salas-Gismondi et al.

Early Miocene

Cucaracha Formation

  Panama

A gryposuchine gavialoid. Genus includes new species D. gunai.

Jiangxisuchus [62]

Gen. et sp. nov

Valid

Li, Wu & Rufolo

Late Cretaceous ( Maastrichtian)

Nanxiong Formation

  China

A member of Crocodyloidea. Genus includes new species J. nankangensis. Announced in 2018; the final version of the article naming it was published in 2019.

Kinesuchus [63]

Gen. et sp. nov

Valid

Filippi, Barrios & Garrido

Late Cretaceous ( Santonian)

Bajo de la Carpa Formation

  Argentina

A peirosaurid crocodyliform. The type species is K. overoi.

Magyarosuchus [64]

Gen. et sp. nov

Valid

Ősi et al.

Early Jurassic ( Toarcian)

Kisgerecse Marl Formation

  Hungary

A member of Metriorhynchoidea. The type species is M. fitosi.

Maledictosuchus nuyivijanan [65]

Sp. nov

Valid

Barrientos-Lara, Alvarado-Ortega & Fernández

Late Jurassic ( Kimmeridgian)

Sabinal Formation

  Mexico

Mandasuchus [66]

Gen. et sp. nov

Valid

Butler et al.

Triassic

Manda Formation

  Tanzania

An early member of Paracrocodylomorpha belonging to the group Loricata. The type species is M. tanyauchen.

Pagosvenator [67]

Gen. et sp. nov

Valid

Lacerda, de França & Schultz

MiddleLate Triassic

Dinodontosaurus Assemblage Zone of the Santa Maria Supersequence

  Brazil

A member of the family Erpetosuchidae. Genus includes new species P. candelariensis.

Portugalosuchus [68]

Gen. et sp. nov

Valid

Mateus, Puértolas-Pascual & Callapez

Late Cretaceous ( Cenomanian)

Tentugal Formation

  Portugal

A member of Eusuchia, possibly the oldest known member of Crocodilia. Genus includes new species P. azenhae.

Protocaiman [69]

Gen. et sp. nov

Valid

Bona et al.

Paleocene ( Danian)

Salamanca Formation

  Argentina

A relative of caimans. Genus includes new species P. peligrensis.

Roxochampsa [70]

Gen. et comb. nov

Valid

Piacentini Pinheiro et al.

Late Cretaceous (late Campanian–early Maastrichtian)

Adamantina Formation
Presidente Prudente Formation

  Brazil

A crocodyliform belonging to the family Itasuchidae. The type species is " Goniopholis" paulistanus Roxo (1936).

Theriosuchus morrisonensis [71]

Sp. nov

Valid

Foster

Late Jurassic

Morrison Formation

  United States
(  Wyoming)

A new species of the atoposaurid Theriosuchus and the first known from North America.

Wahasuchus [72]

Gen. et sp. nov

Valid

Saber et al.

Late Cretaceous ( Campanian)

Quseir Formation

  Egypt

A member of Mesoeucrocodylia of uncertain phylogenetic placement, possibly a neosuchian. Genus includes new species W. egyptensis.

Non-avian dinosaurs

Multiple studies were conducted, discoveries made, and taxa discovered related to non-avian dinosaurs, including the Acantholipan [73] in Mexico. Evidence was discovered of cuticle preservation on theropod eggshells from the Nanxiong Group in China and the Two Medicine Formation in Montana, United States is presented by Yang et al. (2018).. [74] A new specimen of Sinovenator changii, including a nearly complete skull and providing new information on the anatomy of the skull of this species, was described from the Lower Cretaceous Yixian Formation ( China) by Yin, Pei & Zhou (2018). [75]

Birds

Research

  • Dinosaur-like ossification pattern of skull bones (formation of the ossification centres of the prefrontal and postorbital) is reported in bird embryos by Smith-Paredes et al. (2018). [76]
  • A study evaluating whether eggs of early birds from the Mesozoic could have borne the weight of incubating adults is published by Deeming & Mayr (2018). [77]
  • A study on the formation of the pygostyle in extant birds and its evolution in Mesozoic birds is published by Rashid et al. (2018), who interpret their findings as indicating that the lack of pygostyle in Zhongornis haoae and other juvenile Mesozoic birds does not necessarily indicate that they are intermediate species in the long- to short-tailed evolutionary transition, and that feathered coelurosaur tail preserved in Burmese amber which was described by Xing et al. (2016) [78] might be avian. [79]
  • A study on the anatomy of the braincase of birds and non-avian dinosaurs, evaluating whether there is a link between changes in brain anatomy and loss of flight, is published by Gold & Watanabe (2018). [80]
  • A study on the preservation potential of feather keratin in the fossil record is published by Schweitzer et al. (2018); [81] the study is subsequently criticized by Saitta & Vinther (2019). [82]
  • Description of 31 samples of Cretaceous amber from Myanmar that contain feathers, providing new information on the morphology and variability of rachis-dominated feathers of Cretaceous birds, is published by Xing et al. (2018). [83]
  • A pseudoscorpion attached to barbules of a contour feather, possibly documenting a phoretic association between pseudoscorpions and Mesozoic birds, is described from the Cretaceous amber from Myanmar by Xing, McKellar & Gao (2018). [84]
  • A redescription of the bird trackway originally labeled Aquatilavipes anhuiensis from the Lower Cretaceous Qiuzhuang Formation ( Anhui, China) is published by Xing et al. (2018), who transfer this ichnospecies to the ichnogenus Koreanaornis. [85]
  • Early Cretaceous ( Aptian) bird footprints are described from the Kitadani Formation ( Japan) by Imai, Tsukiji & Azuma (2018). [86]
  • New avian ichnospecies Ignotornis canadensis is described from the Lower Cretaceous ( Albian) Gates Formation ( Canada) by Buckley, McCrea & Xing (2018). [87]
  • Ignotornid tracks are described from the Lower Cretaceous of Jiangsu ( China) by Xing et al. (2018), representing the first known record of the ichnogenus Goseongornipes from China. [88]
  • The twelfth specimen of Archaeopteryx, the oldest reported so far, is described by Rauhut, Foth & Tischlinger (2018). [89] This was named as the new genus Alcmonavis in 2019.
  • A study on the geometric properties of the wing bones of Archaeopteryx is published by Voeten et al. (2018), who interpret their findings as indicating that Archaeopteryx was able to actively use its wings to take to the air (using a different flight stroke than used by extant birds). [90]
  • Gastrolith masses preserved in five specimens of Jeholornis will be described by O'Connor et al. (2018). [91]
  • A new confuciusornithid specimen, most similar to Eoconfuciusornis zhengi but also sharing traits with Confuciusornis, will be described from the Upper Cretaceous Huajiying Formation ( China) by Navalón et al. (2018). [92]
  • A study on the morphology of the skull of Confuciusornis sanctus is published by Elżanowski, Peters & Mayr (2018). [93]
  • An exceptionally-preserved specimen of Confuciusornis, preserving elaborate plumage patterning, is described from the Lower Cretaceous deposits in Fengning County ( Hebei Province, China) estimated to be equivalent with the Dawangzhangzi Member of the Yixian Formation by Li et al. (2018). [94]
  • An articulated skeleton of an enantiornithine bird preserved in the Cretaceous amber from Myanmar is described by Xing et al. (2018). [95]
  • An early juvenile enantiornithine specimen, providing new information on the osteogenesis in members of Enantiornithes, is described from the Lower Cretaceous Las Hoyas deposits of Spain by Knoll et al. (2018). [96]
  • A study evaluating the capacity of the enantiornithines Concornis lacustris and Eoalulavis hoyasi to use intermittent flight (alternating flapping and gliding phases) is published by Serrano et al. (2018). [97]
  • A study on the morphology and diversity of enantiornithine coracoids from the Upper Cretaceous Bissekty Formation (Dzharakuduk locality, Uzbekistan) is published by Panteleev (2018). [98]
  • O’Connor et al. (2018) propose criteria for identifying medullary bone in fossils, and report probable medullary bone from a pengornithid enantiornithine specimen from the Lower Cretaceous Jiufotang Formation ( China). [99]
  • A specimen of Archaeorhynchus spathula with extensive soft tissue preservation, revealing a tail morphology previously unknown in Mesozoic birds and an exceptional occurrence of fossilized lung tissue, is described from the Lower Cretaceous Jiufotang Formation ( China) by Wang et al. (2018). [100]
  • Wang et al. (2018) report the presence of distinct salt gland fossa on the frontal of a bird similar to Iteravis huchzermeyeri and Gansus zheni from the Lower Cretaceous Sihedang locality (Jiufotang Formation, China); the authors also consider I. huchzermeyeri and G. zheni to be probably synonymous. [101]
  • Abundant black flies, thought to have inhabited the same environments as Cretaceous ornithurine birds and most likely fed on them, are described from the Santonian Taimyr amber ( Russia) by Perkovsky, Sukhomlin & Zelenkov (2018), who use these insects as an indicator of a bird community, and argue that advanced ornithuromorph birds might have originated at higher latitudes. [102]
  • Field et al. (2018) report new specimens and previously overlooked elements of the holotype of Ichthyornis dispar, and generate a nearly complete three-dimensional reconstruction of the skull of this species. [103]
  • A study on the impact of the widespread destruction of forests during the Cretaceous–Paleogene extinction event on bird evolution, as indicated by ancestral state reconstructions of neornithine ecology and inferences about enantiornithine ecology, is published by Field et al. (2018), who interpret their findings as indicating that the global forest collapse at the end of the Cretaceous caused extinction of predominantly tree-dwelling birds, while bird groups that survived the extinction and gave rise to extant birds were non-arboreal. [104]
  • A study on the evolution of the anatomy of the crown-bird skull is published by Felice & Goswami (2018), who also present a hypothetical reconstruction of the ancestral crown-bird skull. [105]
  • A fossil tinamou belonging to the genus Eudromia, exceeding the size range of living species of the genus, is described from the Lujanian sediments in Marcos Paz County ( Buenos Aires Province, Argentina) by Cenizo et al. (2018). [106]
  • A study on the dietary behavior of four species of the moa and their interactions with parasites based on data from their coprolites is published by Boast et al. (2018). [107]
  • A study on the seeds preserved in moa coprolites is published by Carpenter et al. (2018), who question the hypothesis that some of the largest-seeded plants of New Zealand were dispersed by moas. [108]
  • A study on the genetic and morphological diversity of the emus, including extinct island populations, is published by Thomson et al. (2018). [109]
  • A study on the timing of first human arrival in Madagascar, as indicated by evidence of prehistoric human modification of multiple elephant bird postcranial elements, is published by Hansford et al. (2018). [110]
  • A study on the anatomy of the brains of elephant birds Aepyornis maximus and A. hildebrandti, and on its implications for inferring the ecology and behaviour of these birds, is published by Torres & Clarke (2018). [111]
  • A model of development of bony pseudoteeth of the odontopterygiform birds is proposed by Louchart et al. (2018). [112]
  • A study on the phylogenetic relationships of the taxa assigned to the family Vegaviidae by Agnolín et al. (2017) [113] is published by Mayr et al. (2018). [114]
  • A study on the adaptations for filter-feeding (other than beak shape) in the feeding apparatus of modern ducks, evaluating whether they could be also found in the skull of Presbyornis, is published by Zelenkov & Stidham (2018), who argue that Presbyornis most likely was a poorly specialized filter-feeder. [115]
  • A study on the phylogenetic relationships of the species Chendytes lawi and the Labrador duck (Camptorhynchus labradorius) is published by Buckner et al. (2018). [116]
  • Schmidt (2018) interprets more than 1000 large, near-circular gravel mounds from western New South Wales ( Australia) as likely to be nest mounds constructed by an extinct bird, similar to the malleefowl but larger. [117]
  • A study on the phylogenetic relationships of Foro panarium is published by Field & Hsiang (2018), who consider this species to be a stem- turaco. [118]
  • Petralca austriaca, originally thought to be an auk, is reinterpreted as a member of Gaviiformes by Göhlich & Mayr (2018). [119]
  • Globuli ossei (subspherical structures of endochondral origin, inserted in the hypertrophic cartilage of long bones) are reported for the first time in a bird (a fossil penguin Delphinornis arctowskii from Antarctica) by Garcia Marsà, Tambussi & Cerda (2018). [120]
  • Redescription of the anatomy of the fossil penguin Madrynornis mirandus and a study on the phylogenetic relationships of this species is published by Degrange, Ksepka & Tambussi (2018). [121]
  • Fossil material attributed to the extinct Hunter Island penguin (Tasidyptes hunteri) is reinterpreted as assemblage of remains from three extant penguin species by Cole et al. (2018). [122]
  • A study on the history of penguin colonization of the Vestfold Hills ( Antarctica), indicating that penguins started colonizing the northern Vestfold Hills around 14.6 thousand years before present, is published by Gao et al. (2018). [123]
  • A study on the history of active and abandoned Adélie penguin colonies at Cape Adare ( Antarctica), based on new excavations and radiocarbon dating, is published by Emslie, McKenzie & Patterson (2018). [124]
  • A study on the mummified Adélie penguin carcasses and associated sediments from the Long Peninsula ( East Antarctica), and on their implications for inferring the causes of the abandonment of numerous penguin sub‐colonies in this area during the 2nd millennium, is published by Gao et al. (2018). [125]
  • New bird fossils, including the first reported tarsometatarsus of the plotopterid Tonsala hildegardae are described from the late Eocene/early Oligocene Makah Formation and the Oligocene Pysht Formation ( Washington state, United States) by Mayr & Goedert (2018), who name a new plotopterid subfamily Tonsalinae. [126]
  • A well-preserved scapula of a plotopterid, enabling the reconstruction of the triosseal canal in plotopterids, is described from the Oligocene Jinnobaru Formation ( Japan) by Ando & Fukata (2018). [127]
  • Fossil remains of the spectacled cormorant (Phalacrocorax perspicillatus) are described from the upper Pleistocene of Shiriya (northeast Japan) by Watanabe, Matsuoka & Hasegawa (2018). [128]
  • Extinct lowland kagu (Rhynochetos orarius) is reinterpreted as synonymous with extant kagu (Rhynochetos jubatus) by Theuerkauf & Gula (2018). [129]
  • A study on the phylogenetic relationships of the Rodrigues scops owl and Mauritius scops owl is published by Louchart et al. (2018). [130]
  • Fossils of the barn owl (Tyto alba) are described from the Dinaledi Chamber of the Rising Star Cave system ( South Africa) by Kruger & Badenhorst (2018), who also evaluate how these bird bones were introduced into the Dinaledi Chamber. [131]
  • New fossils of stem- mousebirds belonging to the family Sandcoleidae, providing new information on the anatomy of members of this family, are described from the Eocene of the Messel pit ( Germany) by Mayr (2018). [132]
  • Partial skeleton of an early member of Coraciiformes of uncertain generic and specific assignment, showing several previously unknown features of the skull and vertebral column of early coraciiforms, is described from the Lower Eocene (53.5–51.5 million years old) London Clay ( United Kingdom) by Mayr & Walsh (2018). [133]
  • New phorusrhacid fossils are described from the Pleistocene of Uruguay by Jones et al. (2018), providing evidence of survival of phorusrhacids until the end of the Pleistocene. [134]
  • A study on the phylogenetic relationships of the extinct Cuban macaw (Ara tricolor) is published by Johansson et al. (2018). [135]
  • A study on an ancient DNA of scarlet macaws recovered from archaeological sites in Chaco Canyon and the contemporaneous Mimbres area of New Mexico is published by George et al. (2018), who report low genetic diversity in this sample, and interpret their findings as indicating that people at an undiscovered Pre-Hispanic settlement dating between 900 and 1200 CE managed a macaw breeding colony outside their endemic range. [136]
  • A study on the bird fossils from the Olduvai Gorge site ( Tanzania) and their implications for inferring the environmental context of the site during the Oldowan- Acheulean transitional period is published by Prassack et al. (2018). [137]
  • A study on the bird fossil assemblage from the Pleistocene of the Rio Secco Cave (north-eastern Italy) and its implications for the palaeoenvironmental reconstructions of the site is published by Carrera et al. (2018). [138]
  • Oswald & Steadman (2018) report nearly 500 (probably late Pleistocene) bird fossils collected on New Providence ( The Bahamas) in 1958 and 1960. [139]
  • A study on the fossils of Pleistocene birds collected on Picard Island ( Seychelles) in 1987 is published by Hume, Martill & Hing (2018). [140]
  • A revision of non- passeriform landbird fossils from the Pleistocene of Shiriya (northeast Japan) is published by Watanabe, Matsuoka & Hasegawa (2018). [141]
  • Remains of 32 species of seabirds and related taxa are reported from the middle–late Pleistocene Shiriya local fauna (northeastern Japan) by Watanabe, Matsuoka & Hasegawa (2018). [142]
  • Description of Late Pleistocene bird fauna from Buso Doppio del Broion Cave ( Berici Hills, Italy), including fossils of the snowy owl and the northern hawk-owl (considered to be markers of a colder climate than the present one) and the first Italian Pleistocene fossil remains of the Eurasian wren and the black redstart, is published by Carrera et al. (2018). [143]
  • Bird eggshell fragments are described from the Fitterer Ranch locality within the Oligocene Brule Formation ( North Dakota, United States) by Lawver & Boyd (2018), who name a new ootaxon Metoolithus jacksonae. [144]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Aquila claudeguerini [145]

Sp. nov

Valid

Mourer‑Chauviré & Bonifay

Early Pleistocene

  France

A species of Aquila.

Ardenna davealleni [146]

Sp. nov

Valid

Tennyson & Mannering

Pliocene

  New Zealand

A species of Ardenna.

Chenoanas asiatica [147]

Sp. nov

Valid

Zelenkov et al.

Middle Miocene

  China
  Mongolia

A duck.

Cinclosoma elachum [148]

Sp. nov

Valid

Nguyen, Archer & Hand

Miocene

Riversleigh World Heritage Area

  Australia

A quail-thrush.

Ducula tihonireasini [149]

Sp. nov

Valid

Rigal, Kirch & Worthy

Holocene

  French Polynesia

An imperial pigeon.

Eogranivora [150]

Gen. et sp. nov

Valid

Zheng et al.

Early Cretaceous

Yixian Formation

  China

An early member of Ornithuromorpha. Genus includes new species E. edentulata.

Gettyia [151]

Gen. et comb. nov

Valid

Atterholt, Hutchison & O’Connor

Late Cretaceous ( Campanian)

Two Medicine Formation

  United States
(  Montana)

A member of Enantiornithes belonging to the family Avisauridae. The type species is " Avisaurus" gloriae Varricchio & Chiappe (1995).

Jinguofortis [152]

Gen. et sp. nov

Valid

Wang, Stidham & Zhou

Early Cretaceous

Dabeigou Formation

  China

A basal member of Pygostylia, probably a relative of Chongmingia. Genus includes new species J. perplexus.

Kischinskinia [153]

Gen. et sp. nov

Valid

Volkova & Zelenkov

Early Miocene

  Russia

A passerine belonging to the group Certhioidea. Genus includes new species K. scandens.

Litorallus [154]

Gen. et sp. nov

Valid

Mather et al.

Early Miocene ( Altonian)

Bannockburn Formation

  New Zealand

A rail. The type species is L. livezeyi.

Mirarce [151]

Gen. et sp. nov

Valid

Atterholt, Hutchison & O’Connor

Late Cretaceous (late Campanian)

Kaiparowits Formation

  United States
(  Utah)

A member of Enantiornithes belonging to the family Avisauridae. The type species is M. eatoni.

Muriwaimanu [155]

Gen. et comb. nov

Valid

Mayr et al.

Late Paleocene

Waipara Greensand

  New Zealand

An early penguin; a new genus for " Waimanu" tuatahi Ando, Jones & Fordyce in Slack et al. (2006).

Pandion pannonicus [156]

Sp. nov

Valid

Kessler

Late Oligocene

  Hungary

A species of Pandion.

Panraogallus [157]

Gen. et sp. nov

Li et al.

Late Miocene

Liushu Formation

  China

A member of the family Phasianidae. The type species is P. hezhengensis.

Priscaweka [154]

Gen. et sp. nov

Valid

Mather et al.

Early Miocene ( Altonian)

Bannockburn Formation

  New Zealand

A rail. The type species is P. parvales.

Rallus gracilipes [158]

Sp. nov

Valid

Takano & Steadman

Late Pleistocene

  The Bahamas

A rail, a species of Rallus.

Romainvillia kazakhstanensis [159]

Sp. nov

Valid

Zelenkov

Late Eocene

Kustovskaya Formation

  Kazakhstan

A member of Anseriformes belonging to the family Romainvillidae.

Scolopax mira ohyamai [160]

Subsp. nov.

Valid

Matsuoka & Hasegawa

Late Pleistocene

  Japan

An extinct subspecies of the Amami woodcock (Scolopax mira).

Sequiwaimanu [155]

Gen. et sp. nov

Valid

Mayr et al.

Middle Paleocene

Waipara Greensand

  New Zealand

An early penguin. Genus includes new species S. rosieae.

Vanellus liffyae [161]

Sp. nov.

Valid

De Pietri et al.

Late Pliocene

  Australia

A species of Vanellus.

Vorombe [162]

Gen. et comb. nov

Disputed

Hansford & Turvey

Holocene

  Madagascar

An elephant bird. The type species is " Aepyornis" titan Andrews (1894). Announced in 2018; the correction including the required ZooBank accession number was published in 2020. [163] Tentatively synonymised with Aepyornis maximus by Grealy et al. (2023). [164]

Winnicavis [165]

Gen. et sp. nov

Valid

Bocheński et al.

Oligocene ( Rupelian)

Menilite Formation

  Poland

A passerine of uncertain phylogenetic placement, approximately the size of a great tit. The type species is W. gorskii.

Yangavis [166]

Gen. et sp. nov

Valid

Wang & Zhou

Early Cretaceous ( Aptian)

Yixian Formation

  China

A member of the family Confuciusornithidae. Genus includes new species Y. confucii.

Zygodactylus grandei [167]

Sp. nov.

Valid

Smith, DeBee & Clarke

Early Eocene

Green River Formation

  United States
(  Wyoming)

A member of the family Zygodactylidae.

Pterosaurs

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Alcione [185]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

  Morocco

A member of the family Nyctosauridae. The type species is A. elainus.

Barbaridactylus [185]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

  Morocco

A member of the family Nyctosauridae. The type species is B. grandis.

Caelestiventus [186]

Gen. et sp. nov

Valid

Britt et al.

Late Triassic (probably late Norian or Rhaetian)

Nugget Sandstone

  United States
(  Utah)

A relative of Dimorphodon. Genus includes new species C. hanseni.

Coloborhynchus fluviferox [187]

Sp. nov

Valid

Jacobs et al.

Cretaceous

Kem Kem Beds

  Morocco

Announced in 2018; the final version of the article naming it was published in 2019. Originally described as a species of Coloborhynchus, but subsequently transferred to the genus Nicorhynchus. [188]

Klobiodon [189]

Gen. et sp. nov

Valid

O’Sullivan & Martill

Middle Jurassic ( Bathonian)

Taynton Limestone Formation

  United Kingdom

A member of the family Rhamphorhynchidae. The type species is K. rochei.

Mistralazhdarcho [190]

Gen. et sp. nov

Valid

Vullo et al.

Late Cretaceous ( Campanian)

  France

A member of the family Azhdarchidae. Genus includes new species M. maggii.

Serradraco [191]

Gen. et comb. nov

Valid

Rigal, Martill & Sweetman

Early Cretaceous (late Valanginian or early Hauterivian)

Upper Tunbridge Wells Sand Formation

  United Kingdom

A pterodactyloid pterosaur; a new genus for " Pterodactylus" sagittirostris Owen (1874). Announced in 2017; the final version of the article naming it was published in 2018.

Simurghia [185]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

  Morocco

A member of the family Nyctosauridae. The type species is S. robusta.

Tethydraco [185]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

  Morocco

A pterosaur of uncertain phylogenetic placement, might be a member of the family Pteranodontidae [185] or Azhdarchidae. [192] The type species is T. regalis.

Vesperopterylus [193]

Gen. et sp. nov

Valid

et al.

Early Cretaceous

Jiufotang Formation

  China

A member of the family Anurognathidae. Genus includes new species V. lamadongensis. Announced in 2017; the final version of the article naming it was published in 2018.

Xericeps [194]

Gen. et sp. nov

Valid

Martill et al.

Cretaceous ( Albian or early Cenomanian)

Kem Kem Beds

  Morocco

A member of Azhdarchoidea. The type species is X. curvirostris. Announced in 2017; the final version of the article naming it was published in 2018.

Other archosaurs

Research

  • A study on the anatomy of Teleocrater rhadinus is published by Nesbitt et al. (2018). [195]
  • A study on the phylogenetic relationships of lagerpetid dinosauromorphs is published by Müller, Langer & Dias-da-Silva (2018). [196]
  • New specimen of Dromomeron romeri (potentially representing the youngest known lagerpetid in North America, if not worldwide) is described from the Owl Rock Member of the Chinle Formation ( Arizona, United States) by Marsh (2018). [197]
  • A study on the phylogenetic relationships of Pisanosaurus mertii is published by Agnolín & Rozadilla (2018), who interpret the taxon as a likely silesaurid. [198]
  • Reevaluation of Caseosaurus crosbyensis and a study on the phylogenetic relationships of the species is published by Baron & Williams (2018). [199]
  • Fossils of a member of the genus Smok of uncertain specific assignment are described from the Upper Triassic Marciszów site (southern Poland) by Niedźwiedzki & Budziszewska-Karwowska (2018). [200]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Soumyasaurus [201]

Gen. et sp. nov

Valid

Sarıgül, Agnolín & Chatterjee

Late Triassic

Tecovas Formation

  United States
(  Texas)

A member of Dinosauriformes, probably a member of the family Silesauridae. The type species is S. aenigmaticus.

References

  1. ^ Robert J. Brocklehurst; Emma R. Schachner; William I. Sellers (2018). "Vertebral morphometrics and lung structure in non-avian dinosaurs". Royal Society Open Science. 5 (10): 180983. doi: 10.1098/rsos.180983. PMC  6227937. PMID  30473845.
  2. ^ Gregory Paul (2019). "Comment on Brocklehurst et al.". Royal Society Open Science. 6 (2): Article ID 181872. Bibcode: 2019RSOS....681872P. doi: 10.1098/rsos.181872. PMC  6408402. PMID  30891298.
  3. ^ Armita R. Manafzadeh; Kevin Padian (2018). "ROM mapping of ligamentous constraints on avian hip mobility: implications for extinct ornithodirans". Proceedings of the Royal Society B: Biological Sciences. 285 (1879): 20180727. doi: 10.1098/rspb.2018.0727. PMC  5998106. PMID  29794053.
  4. ^ Henry P. Tsai; Kevin M. Middleton; John R. Hutchinson; Casey M. Holliday (2018). "Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia" (PDF). Journal of Vertebrate Paleontology. 38 (1): e1427593. Bibcode: 2018JVPal..38E7593T. doi: 10.1080/02724634.2017.1427593. S2CID  90296153.
  5. ^ Andrea Cau (2018). "The assembly of the avian body plan: a 160-million-year long process" (PDF). Bollettino della Società Paleontologica Italiana. 57 (1): 1–25. doi: 10.4435/BSPI.2018.01.
  6. ^ Edina Prondvai; Pascal Godefroit; Dominique Adriaens; Dong-Yu Hu (2018). "Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs". Scientific Reports. 8 (1): Article number 258. Bibcode: 2018NatSR...8..258P. doi: 10.1038/s41598-017-18218-9. PMC  5762864. PMID  29321475.
  7. ^ Maria E. McNamara; Fucheng Zhang; Stuart L. Kearns; Patrick J. Orr; André Toulouse; Tara Foley; David W. E. Hone; Chris S. Rogers; Michael J. Benton; Diane Johnson; Xing Xu; Zhonghe Zhou (2018). "Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds". Nature Communications. 9 (1): Article number 2072. Bibcode: 2018NatCo...9.2072M. doi: 10.1038/s41467-018-04443-x. PMC  5970262. PMID  29802246.
  8. ^ Chase D. Brownstein (2018). "Trace fossils on dinosaur bones reveal ecosystem dynamics along the coast of eastern North America during the latest Cretaceous". PeerJ. 6: e4973. doi: 10.7717/peerj.4973. PMC  6001717. PMID  29910985.
  9. ^ Li, Zhiheng; Zhou, Zhonghe; Clarke, Julia A. (2018). "Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs". PLOS ONE. 13 (6): e0198078. Bibcode: 2018PLoSO..1398078L. doi: 10.1371/journal.pone.0198078. ISSN  1932-6203. PMC  6010247. PMID  29924798.
  10. ^ Tariq Zouheir; Abdelkbir Hminna; Hendrik Klein; Abdelouahed Lagnaoui; Hafid Saber; Joerg W. Schneider (2018). "Unusual archosaur trackway and associated tetrapod ichnofauna from Irohalene member (Timezgadiouine formation, late Triassic, Carnian) of the Argana Basin, Western High Atlas, Morocco". Historical Biology: An International Journal of Paleobiology. 32 (5): 589–601. doi: 10.1080/08912963.2018.1513506. S2CID  91315646.
  11. ^ Martin Lockley; Rhett Burton; Lisa Grondel (2018). "A large assemblage of tetrapod tracks from the Cretaceous Naturita Formation, Cedar Canyon region, southwestern Utah". Cretaceous Research. 92: 108–121. Bibcode: 2018CrRes..92..108L. doi: 10.1016/j.cretres.2018.08.003. S2CID  135147296.
  12. ^ Ashley L. Ferguson; David J. Varricchio; Alex J. Ferguson (2018). "Nest site taphonomy of colonial ground-nesting birds at Bowdoin National Wildlife Refuge, Montana". Historical Biology: An International Journal of Paleobiology. 32 (7): 902–916. doi: 10.1080/08912963.2018.1546699. S2CID  91578187.
  13. ^ María B. Von Baczko (2018). "Rediscovered cranial material of Venaticosuchus rusconii enables the first jaw biomechanics in Ornithosuchidae (Archosauria: Pseudosuchia)". Ameghiniana. 55 (4): 365–379. doi: 10.5710/AMGH.19.03.2018.3170. hdl: 11336/99976. S2CID  134536703.
  14. ^ Sterling J. Nesbitt; Michelle R. Stocker; William G. Parker; Thomas A. Wood; Christian A. Sidor; Kenneth D. Angielczyk (2018). "The braincase and endocast of Parringtonia gracilis, a Middle Triassic suchian (Archosaur: Pseudosuchia)". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 122–141. doi: 10.1080/02724634.2017.1393431. S2CID  89657063.
  15. ^ Ignacio A. Cerda; Julia B. Desojo; Torsten M. Scheyer (2018). "Novel data on aetosaur (Archosauria, Pseudosuchia) osteoderm microanatomy and histology: palaeobiological implications". Palaeontology. 61 (5): 721–745. Bibcode: 2018Palgy..61..721C. doi: 10.1111/pala.12363. hdl: 11336/88404. S2CID  134920515.
  16. ^ Ana Carolina Biacchi Brust; Julia Brenda Desojo; Cesar Leandro Schultz; Voltaire Dutra Paes-Neto; Átila Augusto Stock Da-Rosa (2018). "Osteology of the first skull of Aetosauroides scagliai Casamiquela 1960 (Archosauria: Aetosauria) from the Upper Triassic of southern Brazil (Hyperodapedon Assemblage Zone) and its phylogenetic importance". PLOS ONE. 13 (8): e0201450. Bibcode: 2018PLoSO..1301450B. doi: 10.1371/journal.pone.0201450. PMC  6093665. PMID  30110362.
  17. ^ M. Belen von Baczko; Jeremías R.A. Taborda; Julia Brenda Desojo (2018). "Paleoneuroanatomy of the aetosaur Neoaetosauroides engaeus (Archosauria: Pseudosuchia) and its paleobiological implications among archosauriforms". PeerJ. 6: e5456. doi: 10.7717/peerj.5456. PMC  6109373. PMID  30155359.
  18. ^ William G. Parker (2018). "Redescription of Calyptosuchus (Stagonolepis) wellesi (Archosauria: Pseudosuchia: Aetosauria) from the Late Triassic of the Southwestern United States with a discussion of genera in vertebrate paleontology". PeerJ. 6: e4291. doi: 10.7717/peerj.4291. PMC  5798403. PMID  29416953.
  19. ^ Devin K. Hoffman; Andrew B. Heckert; Lindsay E. Zanno (2018). "Under the armor: X-ray computed tomographic reconstruction of the internal skeleton of Coahomasuchus chathamensis (Archosauria: Aetosauria) from the Upper Triassic of North Carolina, USA, and a phylogenetic analysis of Aetosauria". PeerJ. 6: e4368. doi: 10.7717/peerj.4368. PMC  5815331. PMID  29456892.
  20. ^ William G. Parker (2018). "Anatomical notes and discussion of the first described aetosaur Stagonolepis robertsoni (Archosauria: Suchia) from the Upper Triassic of Europe, and the use of plesiomorphies in aetosaur biochronology". PeerJ. 6: e5455. doi: 10.7717/peerj.5455. PMC  6118205. PMID  30186682.
  21. ^ Dawid Dróżdż (2018). "Osteology of a forelimb of an aetosaur Stagonolepis olenkae (Archosauria: Pseudosuchia: Aetosauria) from the Krasiejów locality in Poland and its probable adaptations for a scratch-digging behavior". PeerJ. 6: e5595. doi: 10.7717/peerj.5595. PMC  6173166. PMID  30310738.
  22. ^ Cedric J. Hagen; Eric M. Roberts; Corwin Sullivan; Jun Liu; Yanyin Wang; Prince C. Owusu Agyemang; Xing Xu (2018). "Taphonomy, geological age, and paleobiogeography of Lotosaurus adentus (Archosauria: Poposauroidea) from the Middle-Upper Triassic Badong Formation, Hunan, China". PALAIOS. 33 (3): 106–124. Bibcode: 2018Palai..33..106H. doi: 10.2110/palo.2017.084. S2CID  133685832.
  23. ^ Lúcio Roberto-Da-Silva; Rodrigo Temp Müller; Marco Aurélio Gallo de França; Sérgio Furtado Cabreira; Sérgio Dias-Da-Silva (2018). "An impressive skeleton of the giant top predator Prestosuchus chiniquensis (Pseudosuchia: Loricata) from the Triassic of Southern Brazil, with phylogenetic remarks". Historical Biology: An International Journal of Paleobiology. 32 (7): 976–995. doi: 10.1080/08912963.2018.1559841. S2CID  92517047.
  24. ^ Candice M. Stefanic; Sterling J. Nesbitt (2018). "The axial skeleton of Poposaurus langstoni (Pseudosuchia: Poposauroidea) and its implications for accessory intervertebral articulation evolution in pseudosuchian archosaurs". PeerJ. 6: e4235. doi: 10.7717/peerj.4235. PMC  5816584. PMID  29472991.
  25. ^ Kathleen N. Dollman; James M. Clark; Mark A. Norell; Xu Xing; Jonah N. Choiniere (2018). "Convergent evolution of a eusuchian-type secondary palate within Shartegosuchidae". American Museum Novitates (3901): 1–23. doi: 10.1206/3901.1. hdl: 2246/6896. S2CID  90152090.
  26. ^ Yanina Herrera; Juan Martín Leardi; Marta S. Fernández (2018). "Braincase and endocranial anatomy of two thalattosuchian crocodylomorphs and their relevance in understanding their adaptations to the marine environment". PeerJ. 6: e5686. doi: 10.7717/peerj.5686. PMC  6263203. PMID  30515353.
  27. ^ Katja Waskow; Detlef Grzegorczyk; P. Martin Sander (2018). "The first record of Tyrannoneustes (Thalattosuchia: Metriorhynchidae): a complete skull from the Callovian (late Middle Jurassic) of Germany". PalZ. 92 (3): 457–480. doi: 10.1007/s12542-017-0395-z. S2CID  134063920.
  28. ^ Gabriel Lio; Federico L. Agnolin; Agustín G. Martinelli; Martín D. Ezcurra; Fernando E. Novas (2018). "New specimen of the enigmatic, Late Cretaceous crocodyliform Neuquensuchus universitas sheds light on the anatomy of the species". Cretaceous Research. 83: 62–74. Bibcode: 2018CrRes..83...62L. doi: 10.1016/j.cretres.2017.09.014. hdl: 11336/94889.
  29. ^ Francisco Barrios; Paula Bona; Ariana Paulina Carabajal; Zulma Gasparini (2018). "Re-description of the cranio-mandibular anatomy of Notosuchus terrestris (Crocodyliformes, Mesoeucrocodylia) from the Upper Cretaceous of Patagonia". Cretaceous Research. 83: 3–39. Bibcode: 2018CrRes..83....3B. doi: 10.1016/j.cretres.2017.08.016. hdl: 11336/32766.
  30. ^ Fabiano Vidoi Iori; Thiago da Silva Marinho; Ismar de Souza Carvalho; Luiz Augusto dos Santos Frare (2018). "Cranial morphology of Morrinhosuchus luziae (Crocodyliformes, Notosuchia) from the Upper Cretaceous of the Bauru Basin, Brazil". Cretaceous Research. 86: 41–52. Bibcode: 2018CrRes..86...41I. doi: 10.1016/j.cretres.2018.02.010. S2CID  133808234.
  31. ^ Fabiano Vidoi Iori; Ismar de Souza Carvalho (2018). "The Cretaceous crocodyliform Caipirasuchus: Behavioral feeding mechanisms". Cretaceous Research. 84: 181–187. Bibcode: 2018CrRes..84..181I. doi: 10.1016/j.cretres.2017.11.023. hdl: 11422/3392.
  32. ^ Kamila L. N. Bandeira; Arthur S. Brum; Rodrigo V. Pêgas; Giovanne M. Cidade; Borja Holgado; André Cidade; Rafael Gomes de Souza (2018). "The Baurusuchidae vs Theropoda record in the Bauru Group (Upper Cretaceous, Brazil): a taphonomic perspective". Journal of Iberian Geology. 44 (1): 25–54. doi: 10.1007/s41513-018-0048-4. S2CID  134403914.
  33. ^ Pedro L. Godoy; Gabriel S. Ferreira; Felipe C. Montefeltro; Bruno C. Vila Nova; Richard J. Butler; Max C. Langer (2018). "Evidence for heterochrony in the cranial evolution of fossil crocodyliforms" (PDF). Palaeontology. 61 (4): 543–558. Bibcode: 2018Palgy..61..543G. doi: 10.1111/pala.12354. S2CID  135248030.
  34. ^ Juan Martín Leardi; Diego Pol; Zulma Gasparini (2018). "New Patagonian baurusuchids (Crocodylomorpha; Notosuchia) from the Bajo de la Carpa Formation (Upper Cretaceous; Neuquén, Argentina): New evidences of the early sebecosuchian diversification in Gondwana". Comptes Rendus Palevol. 17 (8): 504–521. Bibcode: 2018CRPal..17..504L. doi: 10.1016/j.crpv.2018.02.002. hdl: 11336/98526.
  35. ^ Mariana V.A.Sena; Rafael C.L.P. Andrade; Juliana M. Sayão; Gustavo R. Oliveira (2018). "Bone microanatomy of Pepesuchus deiseae (Mesoeucrocodylia, Peirosauridae) reveals a mature individual from the Upper Cretaceous of Brazil". Cretaceous Research. 90: 335–348. Bibcode: 2018CrRes..90..335S. doi: 10.1016/j.cretres.2018.06.008. S2CID  133892913.
  36. ^ D.I. Pashchenko; I.T. Kuzmin; A.G. Sennikov; P.P. Skutschas; M.B. Efimov (2018). "On the finding of neosuchians (Neosuchia, Crocodyliformes) in the Middle Jurassic (Bathonian) deposits of the Moscow Region". Paleontological Journal. 52 (5): 550–562. doi: 10.1134/S0031030118050118. S2CID  91494193.
  37. ^ Jihed Dridi (2018). "New fossils of the giant pholidosaurid genus Sarcosuchus from the Early Cretaceous of Tunisia". Journal of African Earth Sciences. 147: 268–280. Bibcode: 2018JAfES.147..268D. doi: 10.1016/j.jafrearsci.2018.06.023. S2CID  134954361.
  38. ^ Louise M. V. Meunier; Hans C. E. Larsson (2018). "Trematochampsa taqueti as a nomen dubium and the crocodyliform diversity of the Upper Cretaceous In Beceten Formation of Niger". Zoological Journal of the Linnean Society. 182 (3): 659–680. doi: 10.1093/zoolinnean/zlx061.
  39. ^ A. de Celis; I. Narváez; F. Ortega (2018). "Pelvic and femoral anatomy of the Allodaposuchidae (Crocodyliformes, Eusuchia) from the Late Cretaceous of Lo Hueco (Cuenca, Spain)". Journal of Iberian Geology. 44 (1): 85–98. doi: 10.1007/s41513-017-0044-0. S2CID  133664418.
  40. ^ Tai Kubo; Masateru Shibata; Wilailuck Naksri; Pratueng Jintasakul; Yoichi Azuma (2018). "The earliest record of Asian Eusuchia from the Lower Cretaceous Khok Kruat Formation of northeastern Thailand". Cretaceous Research. 82: 21–28. Bibcode: 2018CrRes..82...21K. doi: 10.1016/j.cretres.2017.05.021.
  41. ^ Karla J. Leite; Daniel C. Fortier (2018). "The palate and choanae structure of the Susisuchus anatoceps (Crocodyliformes, Eusuchia): phylogenetic implications". PeerJ. 6: e5372. doi: 10.7717/peerj.5372. PMC  6089207. PMID  30128185.
  42. ^ Caitlin E. Syme; Steven W. Salisbury (2018). "Taphonomy of Isisfordia duncani specimens from the Lower Cretaceous (upper Albian) portion of the Winton Formation, Isisford, central-west Queensland". Royal Society Open Science. 5 (3): 171651. Bibcode: 2018RSOS....571651S. doi: 10.1098/rsos.171651. PMC  5882695. PMID  29657771.
  43. ^ Michael S. Y. Lee; Adam M. Yates (2018). "Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record". Proceedings of the Royal Society B: Biological Sciences. 285 (1881): 20181071. doi: 10.1098/rspb.2018.1071. PMC  6030529. PMID  30051855.
  44. ^ Masaya Iijima; Tai Kubo; Yoshitsugu Kobayashi (2018). "Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids". Royal Society Open Science. 5 (3): 171774. Bibcode: 2018RSOS....571774I. doi: 10.1098/rsos.171774. PMC  5882705. PMID  29657781.
  45. ^ Adam P. Cossette; Christopher A. Brochu (2018). "A new specimen of the alligatoroid Bottosaurus harlani and the early history of character evolution in alligatorids". Journal of Vertebrate Paleontology. 38 (4): (1)–(22). doi: 10.1080/02724634.2018.1486321. S2CID  92801257.
  46. ^ Xiao-Chun Wu; Chun Li; Yan-Yin Wang (2018). "Taxonomic reassessment and phylogenetic test of Asiatosuchus nanlingensis Young, 1964 and Eoalligator chunyii Young, 1964". Vertebrata PalAsiatica. 56 (2): 137–146. doi: 10.19615/j.cnki.1000-3118.170803.
  47. ^ Giovanne M. Cidade; Andrés Solórzano; Ascánio Daniel Rincón; Douglas Riff; Annie Schmaltz Hsiou (2018). "Redescription of the holotype of the Miocene crocodylian Mourasuchus arendsi (Alligatoroidea, Caimaninae) and perspectives on the taxonomy of the species". Historical Biology: An International Journal of Paleobiology. 32 (6): 733–749. doi: 10.1080/08912963.2018.1528246. S2CID  91716043.
  48. ^ Christian Foth; María Victoria Fernandez Blanco; Paula Bona; Torsten M. Scheyer (2018). "Cranial shape variation in jacarean caimanines (Crocodylia, Alligatoroidea) and its implications in the taxonomic status of extinct species: The case of Melanosuchus fisheri" (PDF). Journal of Morphology. 279 (2): 259–273. doi: 10.1002/jmor.20769. PMID  29139133. S2CID  31120204.
  49. ^ Rafael César Lima Pedroso de Andrade; Mariana Valéria Araújo Sena; Esaú Victor Araújo; Renan Alfredo Machado Bantim; Douglas Riff; Juliana Manso Sayão (2018). "Osteohistological study on both fossil and living Caimaninae (Crocodyliformes, Crocodylia) from South America and preliminary comments on growth physiology and ecology". Historical Biology: An International Journal of Paleobiology. 32 (3): 346–355. doi: 10.1080/08912963.2018.1493475. S2CID  91479319.
  50. ^ Anderson Aires Eduardo; Pablo Ariel Martinez; Sidney Feitosa Gouveia; Franciely da Silva Santos; Wilcilene Santos de Aragão; Jennifer Morales-Barbero; Leonardo Kerber; Alexandre Liparini (2018). "Extending the paleontology–biogeography reciprocity with SDMs: Exploring models and data in reducing fossil taxonomic uncertainty". PLOS ONE. 13 (3): e0194725. Bibcode: 2018PLoSO..1394725E. doi: 10.1371/journal.pone.0194725. PMC  5874039. PMID  29590174.
  51. ^ Andrés Solórzano; Mónica Núñez-Flores; Ascanio D. Rincón (2018). "Gryposuchus (Crocodylia, Gavialoidea) from the early Miocene of Venezuela". PalZ. 92 (1): 121–129. doi: 10.1007/s12542-017-0383-3. S2CID  134454036.
  52. ^ Rafael Gomes de Souza; Douglas Riff; Jonas P. de Souza-Filho; Alexander W. A. Kellner (2018). "Revisiting Gryposuchus jessei Gürich, 1912 (Crocodylia: Gavialoidea): specimen description and comments on the genus". Zootaxa. 4457 (1): 167–178. doi: 10.11646/zootaxa.4457.1.9. PMID  30314186. S2CID  52976475.
  53. ^ Robert E. Weems (2018). "Crocodilians of the Calvert Cliffs". Smithsonian Contributions to Paleobiology. 100 (100): 213–240. doi: 10.5479/si.1943-6688.100.
  54. ^ Ai Ito; Riosuke Aoki; Ren Hirayama; Masataka Yoshida; Hiroo Kon; Hideki Endo (2018). "The rediscovery and taxonomical reexamination of the longirostrine crocodylian from the Pleistocene of Taiwan". Paleontological Research. 22 (2): 150–155. doi: 10.2517/2017PR016. S2CID  134961600.
  55. ^ Torsten M. Scheyer; Massimo Delfino; Nicole Klein; Nancy Bunbury; Frauke Fleischer-Dogley; Dennis M. Hansen (2018). "Trophic interactions between larger crocodylians and giant tortoises on Aldabra Atoll, Western Indian Ocean, during the Late Pleistocene". Royal Society Open Science. 5 (1): 171800. doi: 10.1098/rsos.171800. PMC  5792950. PMID  29410873.
  56. ^ Gary S. Morgan; Nancy A. Albury; Renato Rímoli; Phillip Lehman; Alfred L. Rosenberger; Siobhán B. Cooke (2018). "The Cuban crocodile (Crocodylus rhombifer) from Late Quaternary underwater cave deposits in the Dominican Republic". American Museum Novitates (3916): 1–56. doi: 10.1206/3916.1. hdl: 2246/6920. S2CID  92375498.
  57. ^ Roberto-Da-Silva, Lúcio; Müller, Rodrigo Temp; França, Marco Aurélio Gallo de; Cabreira, Sérgio Furtado; Dias-Da-Silva, Sérgio (2018-12-24). "An impressive skeleton of the giant top predator Prestosuchus chiniquensis (Pseudosuchia: Loricata) from the Triassic of Southern Brazil, with phylogenetic remarks". Historical Biology. 32 (7): 976–995. doi: 10.1080/08912963.2018.1559841. ISSN  0891-2963. S2CID  92517047.
  58. ^ a b Rodolfo Salas-Gismondi; Jorge W. Moreno-Bernal; Torsten M. Scheyer; Marcelo R. Sánchez-Villagra; Carlos Jaramillo (2018). "New Miocene Caribbean gavialoids and patterns of longirostry in crocodylians". Journal of Systematic Palaeontology. 17 (12): 1049–1075. doi: 10.1080/14772019.2018.1495275. S2CID  91495532.
  59. ^ Jorgo Ristevski; Mark T. Young; Marco Brandalise de Andrade; Alexander K. Hastings (2018). "A new species of Anteophthalmosuchus (Crocodylomorpha, Goniopholididae) from the Lower Cretaceous of the Isle of Wight, United Kingdom, and a review of the genus". Cretaceous Research. 84: 340–383. Bibcode: 2018CrRes..84..340R. doi: 10.1016/j.cretres.2017.11.008.
  60. ^ Rodolfo A. Coria; Francisco Ortega; Andrea B. Arcucci; Philip J. Currie (2019). "A new and complete peirosaurid (Crocodyliformes, Notosuchia) from Sierra Barrosa (Santonian, Upper Cretaceous) of the Neuquén Basin, Argentina". Cretaceous Research. 95: 89–105. Bibcode: 2019CrRes..95...89C. doi: 10.1016/j.cretres.2018.11.008. S2CID  133671689.
  61. ^ Agustín G. Martinelli; Thiago S. Marinho; Fabiano V. Iori; Luiz Carlos B. Ribeiro (2018). "The first Caipirasuchus (Mesoeucrocodylia, Notosuchia) from the Late Cretaceous of Minas Gerais, Brazil: new insights on sphagesaurid anatomy and taxonomy". PeerJ. 6: e5594. doi: 10.7717/peerj.5594. PMC  6129144. PMID  30202663.
  62. ^ Chun Li; Xiao-chun Wu; Scott Rufolo (2019). "A new crocodyloid (Eusuchia: Crocodylia) from the Upper Cretaceous of China". Cretaceous Research. 94: 25–39. Bibcode: 2019CrRes..94...25L. doi: 10.1016/j.cretres.2018.09.015. S2CID  133661294.
  63. ^ L.S. Filippi; F. Barrios; A.C. Garrido (2018). "A new peirosaurid from the Bajo de la Carpa Formation (Upper Cretaceous, Santonian) of Cerro Overo, Neuquén, Argentina". Cretaceous Research. 83: 75–83. Bibcode: 2018CrRes..83...75F. doi: 10.1016/j.cretres.2017.10.021. hdl: 11336/97117.
  64. ^ Attila Ősi; Mark T. Young; András Galácz; Márton Rabi (2018). "A new large-bodied thalattosuchian crocodyliform from the Lower Jurassic (Toarcian) of Hungary, with further evidence of the mosaic acquisition of marine adaptations in Metriorhynchoidea". PeerJ. 6: e4668. doi: 10.7717/peerj.4668. PMC  5949208. PMID  29761038.
  65. ^ Jair I. Barrientos-Lara; Jesús Alvarado-Ortega; Marta S. Fernández (2018). "The marine crocodile Maledictosuchus (Thalattosuchia, Metriorhynchidae) from the Kimmeridgian deposits of Tlaxiaco, Oaxaca, southern Mexico". Journal of Vertebrate Paleontology. 38 (4): (1)–(14). doi: 10.1080/02724634.2018.1478419. S2CID  92260550.
  66. ^ Richard J. Butler; Sterling J. Nesbitt; Alan J. Charig; David J. Gower; Paul M. Barrett (2018). "Mandasuchus tanyauchen, gen. et sp. nov., a pseudosuchian archosaur from the Manda Beds (?Middle Triassic) of Tanzania". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 96–121. doi: 10.1080/02724634.2017.1343728. S2CID  90164051.
  67. ^ Marcel B. Lacerda; Marco A. G. de França; Cesar L. Schultz (2018). "A new erpetosuchid (Pseudosuchia, Archosauria) from the Middle–Late Triassic of Southern Brazil". Zoological Journal of the Linnean Society. 184 (3): 804–824. doi: 10.1093/zoolinnean/zly008.
  68. ^ Octávio Mateus; Eduardo Puértolas-Pascual; Pedro M. Callapez (2018). "A new eusuchian crocodylomorph from the Cenomanian (Late Cretaceous) of Portugal reveals novel implications on the origin of Crocodylia". Zoological Journal of the Linnean Society. 186 (2): 501–528. doi: 10.1093/zoolinnean/zly064.
  69. ^ Paula Bona; Martín D. Ezcurra; Francisco Barrios; María V. Fernandez Blanco (2018). "A new Palaeocene crocodylian from southern Argentina sheds light on the early history of caimanines". Proceedings of the Royal Society B: Biological Sciences. 285 (1885): 20180843. doi: 10.1098/rspb.2018.0843. PMC  6125902. PMID  30135152.
  70. ^ André E. Piacentini Pinheiro; Paulo Victor Luiz Gomes da Costa Pereira; Rafael G. de Souza; Arthur S. Brum; Ricardo T. Lopes; Alessandra S. Machado; Lílian P. Bergqvist; Felipe M. Simbras (2018). "Reassessment of the enigmatic crocodyliform "Goniopholis" paulistanus Roxo, 1936: Historical approach, systematic, and description by new materials". PLOS ONE. 13 (8): e0199984. Bibcode: 2018PLoSO..1399984P. doi: 10.1371/journal.pone.0199984. PMC  6070184. PMID  30067779.
  71. ^ Foster, J. (2018). "A new atoposaurid crocodylomorph from the Morrison Formation (Upper Jurassic) of Wyoming, USA". Geology of the Intermountain West. 5: 287–295. doi: 10.31711/giw.v5i0.32. ISSN  2380-7601.
  72. ^ Sara Saber; Joseph J.W. Sertich; Hesham M. Sallam; Khaled A. Ouda; Patrick M. O'Connor; Erik R. Seiffert (2018). "An enigmatic crocodyliform from the Upper Cretaceous Quseir Formation, central Egypt". Cretaceous Research. 90: 174–184. Bibcode: 2018CrRes..90..174S. doi: 10.1016/j.cretres.2018.04.004. S2CID  134070704.
  73. ^ Héctor E. Rivera-Sylva; Eberhard Frey; Wolfgang Stinnesbeck; Gerardo Carbot-Chanona; Iván E. Sanchez-Uribe; José Rubén Guzmán-Gutiérrez (2018). "Paleodiversity of Late Cretaceous Ankylosauria from Mexico and their phylogenetic significance". Swiss Journal of Palaeontology. 137 (1): 83–93. doi: 10.1007/s13358-018-0153-1. S2CID  134924657.
  74. ^ Tzu-Ruei Yang; Ying-Hsuan Chen; Jasmina Wiemann; Beate Spiering; P. Martin Sander (2018). "Fossil eggshell cuticle elucidates dinosaur nesting ecology". PeerJ. 6: e5144. doi: 10.7717/peerj.5144. PMC  6037156. PMID  30002976.
  75. ^ Ya-Lei Yin; Rui Pei; Chang-Fu Zhou (2018). "Cranial morphology of Sinovenator changii (Theropoda: Troodontidae) on the new material from the Yixian Formation of western Liaoning, China". PeerJ. 6: e4977. doi: 10.7717/peerj.4977. PMC  6015489. PMID  29942679.
  76. ^ Daniel Smith-Paredes; Daniel Núñez-León; Sergio Soto-Acuña; Jingmai O’Connor; João Francisco Botelho; Alexander O. Vargas (2018). "Dinosaur ossification centres in embryonic birds uncover developmental evolution of the skull". Nature Ecology & Evolution. 2 (12): 1966–1973. doi: 10.1038/s41559-018-0713-1. PMID  30455438. S2CID  53720280.
  77. ^ D. C. Deeming; G. Mayr (2018). "Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs" (PDF). Journal of Evolutionary Biology. 31 (5): 701–709. doi: 10.1111/jeb.13256. PMID  29485191. S2CID  3588317.
  78. ^ Lida Xing; Ryan C. McKellar; Xing Xu; Gang Li; Ming Bai; W. Scott Persons IV; Tetsuto Miyashita; Michael J. Benton; Jianping Zhang; Alexander P. Wolfe; Qiru Yi; Kuowei Tseng; Hao Ran; Philip J. Currie (2016). "A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber". Current Biology. 26 (24): 3352–3360. doi: 10.1016/j.cub.2016.10.008. hdl: 1983/d3a169c7-b776-4be5-96af-6053c23fa52b. PMID  27939315. S2CID  31580099.
  79. ^ Dana J. Rashid; Kevin Surya; Luis M. Chiappe; Nathan Carroll; Kimball L. Garrett; Bino Varghese; Alida Bailleul; Jingmai K. O’Connor; Susan C. Chapman; John R. Horner (2018). "Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens". Scientific Reports. 8 (1): Article number 9014. Bibcode: 2018NatSR...8.9014R. doi: 10.1038/s41598-018-27336-x. PMC  5997987. PMID  29899503.
  80. ^ Maria Eugenia Leone Gold; Akinobu Watanabe (2018). "Flightless birds are not neuroanatomical analogs of non-avian dinosaurs". BMC Evolutionary Biology. 18 (1): 190. doi: 10.1186/s12862-018-1312-0. PMC  6293530. PMID  30545287.
  81. ^ Mary Higby Schweitzer; Wenxia Zheng; Alison E. Moyer; Peter Sjövall; Johan Lindgren (2018). "Preservation potential of keratin in deep time". PLOS ONE. 13 (11): e0206569. Bibcode: 2018PLoSO..1306569S. doi: 10.1371/journal.pone.0206569. PMC  6261410. PMID  30485294.
  82. ^ Evan T. Saitta; Jakob Vinther (2019). "A perspective on the evidence for keratin protein preservation in fossils: An issue of replication versus validation". Palaeontologia Electronica. 22 (3): Article number 22.3.2E. doi: 10.26879/1017E. S2CID  213903998.
  83. ^ Lida Xing; Pierre Cockx; Ryan C. McKellar; Jingmai O’Connor (2018). "Ornamental feathers in Cretaceous Burmese amber: resolving the enigma of rachis-dominated feather structure". Journal of Palaeogeography. 7 (1): Article number 13. Bibcode: 2018JPalG...7...13X. doi: 10.1186/s42501-018-0014-2. S2CID  91693606.
  84. ^ Lida Xing; Ryan C. McKellar; Zhizhong Gao (2018). "Cretaceous hitchhikers: a possible phoretic association between a pseudoscorpion and bird in Burmese amber". Acta Geologica Sinica (English Edition). 92 (6): 2434–2435. doi: 10.1111/1755-6724.13739. S2CID  219884097.
  85. ^ Li-Da Xing; Yuan-Chao Hu; Jian-Dong Huang; Qing He; Martin G. Lockley; Michael E. Burns; Jun Fang (2018). "A redescription of the ichnospecies Koreanaornis anhuiensis (Aves) from the Lower Cretaceous Qiuzhuang Formation at Mingguang city, Anhui Province, China". Journal of Palaeogeography. 7 (1): 58–65. Bibcode: 2018JPalG...7...58X. doi: 10.1016/j.jop.2017.10.003.
  86. ^ Takuya Imai; Yuta Tsukiji; Yoichi Azuma (2018). "Description of bird tracks from the Kitadani Formation (Aptian), Katsuyama, Fukui, Japan with three-dimensional imaging techniques" (PDF). Memoir of the Fukui Prefectural Dinosaur Museum. 17: 1–8.
  87. ^ Lisa G. Buckley; Richard T. McCrea; Lida Xing (2018). "First report of Ignotornidae (Aves) from the Lower Cretaceous Gates Formation (Albian) of western Canada, with description of a new ichnospecies of Ignotornis, Ignotornis canadensis ichnosp. nov". Cretaceous Research. 84: 209–222. Bibcode: 2018CrRes..84..209B. doi: 10.1016/j.cretres.2017.11.021.
  88. ^ Lida Xing; Lisa G. Buckley; Martin G. Lockley; Richard T. McCrea; Yonggang Tang (2018). "Lower Cretaceous avian tracks from Jiangsu Province, China: A first Chinese report for ichnogenus Goseongornipes (Ignotornidae)". Cretaceous Research. 84: 571–577. Bibcode: 2018CrRes..84..571X. doi: 10.1016/j.cretres.2017.12.016.
  89. ^ Oliver W.M. Rauhut; Christian Foth; Helmut Tischlinger (2018). "The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria". PeerJ. 6: e4191. doi: 10.7717/peerj.4191. PMC  5788062. PMID  29383285.
  90. ^ Dennis F. A. E. Voeten; Jorge Cubo; Emmanuel de Margerie; Martin Röper; Vincent Beyrand; Stanislav Bureš; Paul Tafforeau; Sophie Sanchez (2018). "Wing bone geometry reveals active flight in Archaeopteryx". Nature Communications. 9 (1): Article number 923. Bibcode: 2018NatCo...9..923V. doi: 10.1038/s41467-018-03296-8. PMC  5849612. PMID  29535376.
  91. ^ Jingmai O'Connor; Xiaoli Wang; Corwin Sullivan; Yan Wang; Xiaoting Zheng; Han Hu; Xiaomei Zhang; Zhonghe Zhou (2018). "First report of gastroliths in the Early Cretaceous basal bird Jeholornis". Cretaceous Research. 84: 200–208. Bibcode: 2018CrRes..84..200O. doi: 10.1016/j.cretres.2017.10.031.
  92. ^ Guillermo Navalón; Qingjin Meng; Jesús Marugán-Lobón; Yuguang Zhang; Baopeng Wang; Hai Xing; Di Liu; Luis M. Chiappe (2018). "Diversity and evolution of the Confuciusornithidae: Evidence from a new 131-million-year-old specimen from the Huajiying Formation in NE China". Journal of Asian Earth Sciences. 152: 12–22. Bibcode: 2018JAESc.152...12N. doi: 10.1016/j.jseaes.2017.11.005. hdl: 10486/684666. S2CID  135238078.
  93. ^ Andrzej Elżanowski; D. Stefan Peters; Gerald Mayr (2018). "Cranial morphology of the Early Cretaceous bird Confuciusornis". Journal of Vertebrate Paleontology. 38 (2): e1439832. Bibcode: 2018JVPal..38E9832E. doi: 10.1080/02724634.2018.1439832. S2CID  90118265.
  94. ^ Quanguo Li; Julia A. Clarke; Ke-Qin Gao; Jennifer A. Peteya; Matthew D. Shawkey (2018). "Elaborate plumage patterning in a Cretaceous bird". PeerJ. 6: e5831. doi: 10.7717/peerj.5831. PMC  6216952. PMID  30405969.
  95. ^ Lida Xing; Jingmai K. O'Connor; Ryan C. McKellar; Luis M. Chiappe; Ming Bai; Kuowei Tseng; Jie Zhang; Haidong Yang; Jun Fang; Gang Li (2018). "A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation". Science Bulletin. 63 (4): 235–243. Bibcode: 2018SciBu..63..235X. doi: 10.1016/j.scib.2018.01.019. PMID  36659012.
  96. ^ Fabien Knoll; Luis M. Chiappe; Sophie Sanchez; Russell J. Garwood; Nicholas P. Edwards; Roy A. Wogelius; William I. Sellers; Phillip L. Manning; Francisco Ortega; Francisco J. Serrano; Jesús Marugán-Lobón; Elena Cuesta; Fernando Escaso; Jose Luis Sanz (2018). "A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds". Nature Communications. 9 (1): Article number 937. Bibcode: 2018NatCo...9..937K. doi: 10.1038/s41467-018-03295-9. PMC  5838198. PMID  29507288.
  97. ^ Francisco J. Serrano; Luis M. Chiappe; Paul Palmqvist; Borja Figueirido; Jesús Marugán-Lobón; José L. Sanz (2018). "Flight reconstruction of two European enantiornithines (Aves, Pygostylia) and the achievement of bounding flight in Early Cretaceous birds". Palaeontology. 61 (3): 359–368. Bibcode: 2018Palgy..61..359S. doi: 10.1111/pala.12351.
  98. ^ A. V. Panteleev (2018). "Morphology of the coracoid of Late Cretaceous enantiornithines (Aves: Enantiornithes) from Dzharakuduk (Uzbekistan)". Paleontological Journal. 52 (2): 201–207. doi: 10.1134/S0031030118020089. S2CID  91039471.
  99. ^ Jingmai O’Connor; Gregory M. Erickson; Mark Norell; Alida M. Bailleul; Han Hu; Zhonghe Zhou (2018). "Medullary bone in an Early Cretaceous enantiornithine bird and discussion regarding its identification in fossils". Nature Communications. 9 (1): Article number 5169. Bibcode: 2018NatCo...9.5169O. doi: 10.1038/s41467-018-07621-z. PMC  6281594. PMID  30518763.
  100. ^ Xiaoli Wang; Jingmai K. O’Connor; John N. Maina; Yanhong Pan; Min Wang; Yan Wang; Xiaoting Zheng; Zhonghe Zhou (2018). "Archaeorhynchus preserving significant soft tissue including probable fossilized lungs". Proceedings of the National Academy of Sciences of the United States of America. 115 (45): 11555–11560. Bibcode: 2018PNAS..11511555W. doi: 10.1073/pnas.1805803115. PMC  6233124. PMID  30348768.
  101. ^ Xia Wang; Jiandong Huang; Yuanchao Hu; Xiaoyu Liu; Jennifer Peteya; Julia A. Clarke (2018). "The earliest evidence for a supraorbital salt gland in dinosaurs in new Early Cretaceous ornithurines". Scientific Reports. 8 (1): Article number 3969. Bibcode: 2018NatSR...8.3969W. doi: 10.1038/s41598-018-22412-8. PMC  5838252. PMID  29507398.
  102. ^ Evgeny E. Perkovsky; Ekaterina B. Sukhomlin; Nikita V. Zelenkov (2018). "An unexpectedly abundant new genus of black flies (Diptera, Simuliidae) from Upper Cretaceous Taimyr amber of Ugolyak, with discussion of the early evolution of birds at high latitudes". Cretaceous Research. 90: 80–89. Bibcode: 2018CrRes..90...80P. doi: 10.1016/j.cretres.2018.04.002. S2CID  134500301.
  103. ^ Daniel J. Field; Michael Hanson; David Burnham; Laura E. Wilson; Kristopher Super; Dana Ehret; Jun A. Ebersole; Bhart-Anjan S. Bhullar (2018). "Complete Ichthyornis skull illuminates mosaic assembly of the avian head". Nature. 557 (7703): 96–100. Bibcode: 2018Natur.557...96F. doi: 10.1038/s41586-018-0053-y. PMID  29720636. S2CID  13678775.
  104. ^ Daniel J. Field; Antoine Bercovici; Jacob S. Berv; Regan Dunn; David E. Fastovsky; Tyler R. Lyson; Vivi Vajda; Jacques A. Gauthier (2018). "Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction". Current Biology. 28 (11): 1825–1831.e2. doi: 10.1016/j.cub.2018.04.062. PMID  29804807. S2CID  44075214.
  105. ^ Ryan N. Felice; Anjali Goswami (2018). "Developmental origins of mosaic evolution in the avian cranium". Proceedings of the National Academy of Sciences of the United States of America. 115 (3): 555–560. Bibcode: 2018PNAS..115..555F. doi: 10.1073/pnas.1716437115. PMC  5776993. PMID  29279399.
  106. ^ Marcos Cenizo; Jorge Noriega; Juan Diederle; Esteban Soibelzon; Leopoldo Soibelzon; Sergio Rodriguez; Elisa Beilinson (2018). "An unexpected large Crested Tinamou (Eudromia, Tinamidae, Aves) near to Last Glacial Maximum (MIS 2, late Pleistocene) of the Argentine Pampas". Historical Biology: An International Journal of Paleobiology. 32 (3): 330–338. doi: 10.1080/08912963.2018.1491568. hdl: 11336/84901. S2CID  91851921.
  107. ^ Alexander P. Boast; Laura S. Weyrich; Jamie R. Wood; Jessica L. Metcalf; Rob Knight; Alan Cooper (2018). "Coprolites reveal ecological interactions lost with the extinction of New Zealand birds". Proceedings of the National Academy of Sciences of the United States of America. 115 (7): 1546–1551. Bibcode: 2018PNAS..115.1546B. doi: 10.1073/pnas.1712337115. PMC  5816151. PMID  29440415.
  108. ^ Joanna K. Carpenter; Jamie R. Wood; Janet M. Wilmshurst; Dave Kelly (2018). "An avian seed dispersal paradox: New Zealand's extinct megafaunal birds did not disperse large seeds". Proceedings of the Royal Society B: Biological Sciences. 285 (1877): 20180352. doi: 10.1098/rspb.2018.0352. PMC  5936733. PMID  29669903.
  109. ^ Vicki A. Thomson; Kieren J. Mitchell; Rolan Eberhard; Joe Dortch; Jeremy J. Austin; Alan Cooper (2018). "Genetic diversity and drivers of dwarfism in extinct island emu populations". Biology Letters. 14 (4): 20170617. doi: 10.1098/rsbl.2017.0617. PMC  5938559. PMID  29618519.
  110. ^ James Hansford; Patricia C. Wright; Armand Rasoamiaramanana; Ventura R. Pérez; Laurie R. Godfrey; David Errickson; Tim Thompson; Samuel T. Turvey (2018). "Early Holocene human presence in Madagascar evidenced by exploitation of avian megafauna". Science Advances. 4 (9): eaat6925. Bibcode: 2018SciA....4.6925H. doi: 10.1126/sciadv.aat6925. PMC  6135541. PMID  30214938.
  111. ^ Christopher R. Torres; Julia A. Clarke (2018). "Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions". Proceedings of the Royal Society B: Biological Sciences. 285 (1890): 20181540. doi: 10.1098/rspb.2018.1540. PMC  6235046. PMID  30381378.
  112. ^ Antoine Louchart; Vivian de Buffrénil; Estelle Bourdon; Maïtena Dumont; Laurent Viriot; Jean-Yves Sire (2018). "Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions". Scientific Reports. 8 (1): Article number 12952. Bibcode: 2018NatSR...812952L. doi: 10.1038/s41598-018-31022-3. PMC  6113277. PMID  30154516.
  113. ^ Federico L. Agnolín; Federico Brissón Egli; Sankar Chatterjee; Jordi Alexis Garcia Marsà; Fernando E. Novas (2017). "Vegaviidae, a new clade of southern diving birds that survived the K/T boundary". The Science of Nature. 104 (11–12): Article number 87. Bibcode: 2017SciNa.104...87A. doi: 10.1007/s00114-017-1508-y. PMID  28988276. S2CID  13246547.
  114. ^ Gerald Mayr; Vanesa L. De Pietri; R. Paul Scofield; Trevor H. Worthy (2018). "On the taxonomic composition and phylogenetic affinities of the recently proposed clade Vegaviidae Agnolín et al., 2017 ‒ neornithine birds from the Upper Cretaceous of the Southern Hemisphere". Cretaceous Research. 86: 178–185. doi: 10.1016/j.cretres.2018.02.013. hdl: 2328/37887. S2CID  134876425.
  115. ^ N. V. Zelenkov; T. A. Stidham (2018). "Possible filter-feeding in the extinct Presbyornis and the evolution of Anseriformes (Aves)". Zoologicheskii Zhurnal. 97 (8): 943–956. doi: 10.1134/s0044513418080159.
  116. ^ Janet C. Buckner; Ryan Ellingson; David A. Gold; Terry L. Jones; David K. Jacobs (2018). "Mitogenomics supports an unexpected taxonomic relationship for the extinct diving duck Chendytes lawi and definitively places the extinct Labrador Duck" (PDF). Molecular Phylogenetics and Evolution. 122: 102–109. doi: 10.1016/j.ympev.2017.12.008. PMID  29247849.
  117. ^ L. Schmidt (2018). "A biological origin for gravel mounds in inland Australia". Australian Journal of Earth Sciences. 65 (5): 607–617. Bibcode: 2018AuJES..65..607S. doi: 10.1080/08120099.2018.1460865. S2CID  133805084.
  118. ^ Daniel J. Field; Allison Y. Hsiang (2018). "A North American stem turaco, and the complex biogeographic history of modern birds". BMC Evolutionary Biology. 18 (1): 102. doi: 10.1186/s12862-018-1212-3. PMC  6016133. PMID  29936914.
  119. ^ Ursula B. Göhlich; Gerald Mayr (2018). "The alleged early Miocene Auk Petralca austriaca is a Loon (Aves, Gaviiformes): restudy of a controversial fossil bird". Historical Biology: An International Journal of Paleobiology. 30 (8): 1076–1083. doi: 10.1080/08912963.2017.1333610. S2CID  90729728.
  120. ^ Jordi Alexis Garcia Marsà; Claudia P. Tambussi; Ignacio A. Cerda (2018). "First evidence of globuli ossei in bird (Aves, Spheniciformes). Implications on paleohistology and bird behaviour". Historical Biology: An International Journal of Paleobiology. 32 (4): 570–573. doi: 10.1080/08912963.2018.1508288. S2CID  91883191.
  121. ^ Federico J. Degrange; Daniel T. Ksepka; Claudia P. Tambussi (2018). "Redescription of the oldest crown clade penguin: cranial osteology, jaw myology, neuroanatomy, and phylogenetic affinities of Madrynornis mirandus". Journal of Vertebrate Paleontology. 38 (2): e1445636. Bibcode: 2018JVPal..38E5636D. doi: 10.1080/02724634.2018.1445636. hdl: 11336/183611. S2CID  90452580.
  122. ^ Theresa L. Cole; Jonathan M. Waters; Lara D. Shepherd; Nicolas J. Rawlence; Leo Joseph; Jamie R. Wood (2018). "Ancient DNA reveals that the 'extinct' Hunter Island penguin (Tasidyptes hunteri) is not a distinct taxon". Zoological Journal of the Linnean Society. 182 (2): 459–464. doi: 10.1093/zoolinnean/zlx043.
  123. ^ Yuesong Gao; Lianjiao Yang; Jianjun Wang; Zhouqing Xie; Yuhong Wang; Liguang Sun (2018). "Penguin colonization following the last glacial-interglacial transition in the Vestfold Hills, East Antarctica". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 629–639. Bibcode: 2018PPP...490..629G. doi: 10.1016/j.palaeo.2017.11.053.
  124. ^ Steven D. Emslie; Ashley McKenzie; William P. Patterson (2018). "The rise and fall of an ancient Adélie penguin 'supercolony' at Cape Adare, Antarctica". Royal Society Open Science. 5 (4): 172032. Bibcode: 2018RSOS....572032E. doi: 10.1098/rsos.172032. PMC  5936921. PMID  29765656.
  125. ^ Yuesong Gao; Lianjiao Yang; Zhouqing Xie; Louise Emmerson; Colin Southwell; Yuhong Wang; Liguang Sun (2018). "Last millennium Adélie penguin mortality and colony abandonment events on Long Peninsula, East Antarctica". Journal of Geophysical Research: Biogeosciences. 123 (9): 2878–2889. Bibcode: 2018JGRG..123.2878G. doi: 10.1029/2018JG004550. S2CID  135026839.
  126. ^ Gerald Mayr; James L. Goedert (2018). "First record of a tarsometatarsus of Tonsala hildegardae (Plotopteridae) and other avian remains from the late Eocene/early Oligocene of Washington State (USA)". Geobios. 51 (1): 51–59. Bibcode: 2018Geobi..51...51M. doi: 10.1016/j.geobios.2017.12.006.
  127. ^ Tatsuro Ando; Keisaku Fukata (2018). "A well-preserved partial scapula from Japan and the reconstruction of the triosseal canal of plotopterids". PeerJ. 6: e5391. doi: 10.7717/peerj.5391. PMC  6112113. PMID  30155348.
  128. ^ Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Pleistocene fossils from Japan show that the recently extinct Spectacled Cormorant (Phalacrocorax perspicillatus) was a relict". The Auk. 135 (4): 895–907. doi: 10.1642/AUK-18-54.1. hdl: 2433/233910. S2CID  91465582.
  129. ^ Jörn Theuerkauf; Roman Gula (2018). "Indirect evidence for body size reduction in a flightless island bird after human colonisation". Journal of Ornithology. 159 (3): 823–826. doi: 10.1007/s10336-018-1545-0. S2CID  3521115.
  130. ^ Antoine Louchart; Fabiola Bastian; Marilia Baptista; Perle Guarino-Vignon; Julian P. Hume; Cécile Jacot-des-Combes; Cécile Mourer-Chauviré; Catherine Hänni; Morgane Ollivier (2018). "Ancient DNA reveals the origins, colonization histories, and evolutionary pathways of two recently extinct species of giant scops owl from Mauritius and Rodrigues Islands (Mascarene Islands, south-western Indian Ocean)". Journal of Biogeography. 45 (12): 2678–2689. doi: 10.1111/jbi.13450. S2CID  91541852.
  131. ^ Ashley Kruger; Shaw Badenhorst (2018). "Remains of a barn owl (Tyto alba) from the Dinaledi Chamber, Rising Star Cave, South Africa". South African Journal of Science. 114 (11/12): Article number 5152. doi: 10.17159/sajs.2018/5152.
  132. ^ Gerald Mayr (2018). "New data on the anatomy and palaeobiology of sandcoleid mousebirds (Aves, Coliiformes) from the early Eocene of Messel". Palaeobiodiversity and Palaeoenvironments. 98 (4): 639–651. doi: 10.1007/s12549-018-0328-1. S2CID  134450324.
  133. ^ Gerald Mayr; Stig A. Walsh (2018). "Exceptionally well-preserved early Eocene fossil reveals cranial and vertebral features of a stem group roller (Aves: Coraciiformes)". PalZ. 92 (4): 715–726. doi: 10.1007/s12542-018-0424-6. S2CID  92362059.
  134. ^ Washington Jones; Andrés Rinderknecht; Herculano Alvarenga; Felipe Montenegro; Martín Ubilla (2018). "The last terror birds (Aves, Phorusrhacidae): new evidence from the late Pleistocene of Uruguay". PalZ. 92 (2): 365–372. doi: 10.1007/s12542-017-0388-y. S2CID  134344096.
  135. ^ Ulf S. Johansson; Per G. P. Ericson; Mozes P. K. Blom; Martin Irestedt (2018). "The phylogenetic position of the extinct Cuban Macaw Ara tricolor based on complete mitochondrial genome sequences". Ibis. 160 (3): 666–672. doi: 10.1111/ibi.12591.
  136. ^ Richard J. George; Stephen Plog; Adam S. Watson; Kari L. Schmidt; Brendan J. Culleton; Thomas K. Harper; Patricia A. Gilman; Steven A. LeBlanc; George Amato; Peter Whiteley; Logan Kistler; Douglas J. Kennett (2018). "Archaeogenomic evidence from the southwestern US points to a Pre-Hispanic scarlet macaw breeding colony". Proceedings of the National Academy of Sciences of the United States of America. 115 (35): 8740–8745. Bibcode: 2018PNAS..115.8740G. doi: 10.1073/pnas.1805856115. PMC  6126748. PMID  30104352.
  137. ^ Kari A. Prassack; Michael C. Pante; Jackson K. Njau; Ignacio de la Torre (2018). "The paleoecology of Pleistocene birds from Middle Bed II, at Olduvai Gorge, Tanzania, and the environmental context of the Oldowan-Acheulean transition". Journal of Human Evolution. 120: 32–47. doi: 10.1016/j.jhevol.2017.11.003. hdl: 10261/357100. PMID  29458978. S2CID  3411642.
  138. ^ Lisa Carrera; Marco Pavia; Matteo Romandini; Marco Peresani (2018). "Avian fossil assemblages at the onset of the LGM in the eastern Alps: A palaecological contribution from the Rio Secco Cave (Italy)". Comptes Rendus Palevol. 17 (3): 166–177. Bibcode: 2018CRPal..17..166C. doi: 10.1016/j.crpv.2017.10.006. hdl: 11392/2396672.
  139. ^ Jessica A. Oswald; David W. Steadman (2018). "The late Quaternary bird community of New Providence, Bahamas". The Auk. 135 (2): 359–377. doi: 10.1642/AUK-17-185.1. S2CID  90808935.
  140. ^ Julian P. Hume; David Martill; Richard Hing (2018). "A terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group, Seychelles". PLOS ONE. 13 (3): e0192675. Bibcode: 2018PLoSO..1392675H. doi: 10.1371/journal.pone.0192675. PMC  5873930. PMID  29590117.
  141. ^ Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Pleistocene non-passeriform landbirds from Shiriya, northeast Japan". Acta Palaeontologica Polonica. 63 (3): 469–491. doi: 10.4202/app.00509.2018. hdl: 2433/234713.
  142. ^ Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Pleistocene seabirds from Shiriya, northeast Japan: systematics and oceanographic context". Historical Biology: An International Journal of Paleobiology. 32 (5): 671–729. doi: 10.1080/08912963.2018.1529764. S2CID  91318600.
  143. ^ Lisa Carrera; Marco Pavia; Marco Peresani; Matteo Romandini (2018). "Late Pleistocene fossil birds from Buso Doppio del Broion Cave (North-Eastern Italy): implications for palaeoecology, palaeoenvironment and palaeoclimate". Bollettino della Società Paleontologica Italiana. 57 (2): 145–174. doi: 10.4435/BSPI.2018.10.
  144. ^ Daniel R. Lawver; Clint A. Boyd (2018). "An avian eggshell from the Brule Formation (Oligocene) of North Dakota". Journal of Vertebrate Paleontology. 38 (4): (1)–(9). doi: 10.1080/02724634.2018.1486848. S2CID  92011080.
  145. ^ Cécile Mourer‑Chauviré; Marie‑Françoise Bonifay (2018). "The birds from the Early Pleistocene of Ceyssaguet (Lavoûte‑sur‑Loire, Haute‑Loire, France): description of a new species of the genus Aquila". Quaternaire. 29 (3): 183–194.
  146. ^ Alan J.D. Tennyson; Al A. Mannering (2018). "A new species of Pliocene shearwater (Aves: Procellariidae) from New Zealand" (PDF). Tuhinga: Records of the Museum of New Zealand. 29: 1–19.
  147. ^ Nikita V. Zelenkov; Thomas A. Stidham; Nicolay V. Martynovich; Natalia V. Volkova; Qiang Li; Zhuding Qiu (2018). "The middle Miocene duck Chenoanas (Aves, Anatidae): new species, phylogeny and geographical range". Papers in Palaeontology. 4 (3): 309–326. doi: 10.1002/spp2.1107. S2CID  134072594.
  148. ^ Jacqueline M.T. Nguyen; Michael Archer; Suzanne J. Hand (2018). "Quail-thrush birds from the Miocene of northern Australia". Acta Palaeontologica Polonica. 63 (3): 493–502. doi: 10.4202/app.00485.2018.
  149. ^ Stanislas Rigal; Patrick V. Kirch; Trevor H. Worthy (2018). "New prehistoric avifaunas from the Gambier Group, French Polynesia". Palaeontologia Electronica. 21 (3): Article number 21.3.43. doi: 10.26879/892.
  150. ^ Xiaoting Zheng; Jingmai K. O'Connor; Xiaoli Wang; Yan Wang; Zhonghe Zhou (2018). "Reinterpretation of a previously described Jehol bird clarifies early trophic evolution in the Ornithuromorpha". Proceedings of the Royal Society B: Biological Sciences. 285 (1871): 20172494. doi: 10.1098/rspb.2017.2494. PMC  5805944. PMID  29386367.
  151. ^ a b Jessie Atterholt; J. Howard Hutchison; Jingmai K. O’Connor (2018). "The most complete enantiornithine from North America and a phylogenetic analysis of the Avisauridae". PeerJ. 6: e5910. doi: 10.7717/peerj.5910. PMC  6238772. PMID  30479894.
  152. ^ Min Wang; Thomas A. Stidham; Zhonghe Zhou (2018). "A new clade of basal Early Cretaceous pygostylian birds and developmental plasticity of the avian shoulder girdle". Proceedings of the National Academy of Sciences of the United States of America. 115 (42): 10708–10713. Bibcode: 2018PNAS..11510708W. doi: 10.1073/pnas.1812176115. PMC  6196491. PMID  30249638.
  153. ^ Natalia V. Volkova; Nikita V. Zelenkov (2018). "A scansorial passerine bird (Passeriformes, Certhioidea) from the uppermost Lower Miocene of Eastern Siberia". Paleontological Journal. 52 (1): 58–65. doi: 10.1134/S0031030118010148. S2CID  90889828.
  154. ^ a b Ellen K. Mather; Alan J. D. Tennyson; R. Paul Scofield; Vanesa L. De Pietri; Suzanne J. Hand; Michael Archer; Warren D. Handley; Trevor H. Worthy (2018). "Flightless rails (Aves: Rallidae) from the early Miocene St Bathans Fauna, Otago, New Zealand". Journal of Systematic Palaeontology. 17 (5): 423–449. doi: 10.1080/14772019.2018.1432710. S2CID  90809776.
  155. ^ a b Gerald Mayr; Vanesa L. De Pietri; Leigh Love; Al A. Mannering; R. Paul Scofield (2018). "A well-preserved new mid-Paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New Zealand". Journal of Vertebrate Paleontology. 37 (6): e1398169. doi: 10.1080/02724634.2017.1398169. S2CID  89744522.
  156. ^ Jenő (Eugen) Kessler (2018). "Evolution and presence of diurnal predatory birds in the Carpathian Basin". Ornis Hungarica. 26 (1): 102–123. doi: 10.1515/orhu-2018-0008. S2CID  91303297.
  157. ^ Zhiheng Li; Julia A. Clarke; Chad M. Eliason; Thomas A. Stidham; Tao Deng; Zhonghe Zhou (2018). "Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China". Scientific Reports. 8 (1): Article number 8099. Bibcode: 2018NatSR...8.8099L. doi: 10.1038/s41598-018-26178-x. PMC  5970207. PMID  29802379.
  158. ^ Oona M. Takano; David W. Steadman (2018). "Another new species of flightless Rail (Aves: Rallidae: Rallus) from Abaco, The Bahamas". Zootaxa. 4407 (3): 376–382. doi: 10.11646/zootaxa.4407.3.5. PMID  29690183.
  159. ^ N. V. Zelenkov (2018). "The earliest Asian duck (Anseriformes: Romainvilla) and the origin of Anatidae". Doklady Biological Sciences. 483 (1): 225–227. doi: 10.1134/S0012496618060030. PMID  30603943. S2CID  57427172.
  160. ^ Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Birds around the Minatogawa Man: the Late Pleistocene avian fossil assemblage of the Minatogawa Fissure, southern part of Okinawa Island, Central Ryukyu Islands, Japan" (PDF). Bulletin of Gunma Museum of Natural History. 22: 1–21.
  161. ^ Vanesa L. De Pietri; R. Paul Scofield; Gavin J. Prideaux; Trevor H. Worthy (2018). "A new species of lapwing (Charadriidae: Vanellus) from the late Pliocene of central Australia". Emu - Austral Ornithology. 118 (4): 334–343. doi: 10.1080/01584197.2018.1464373. S2CID  90021022.
  162. ^ James P. Hansford; Samuel T. Turvey (2018). "Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world's largest bird". Royal Society Open Science. 5 (9): 181295. Bibcode: 2018RSOS....581295H. doi: 10.1098/rsos.181295. PMC  6170582. PMID  30839722.
  163. ^ James P. Hansford; Samuel T. Turvey (2020). "Correction to 'Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world's largest bird'". Royal Society Open Science. 7 (9): Article ID 201358. Bibcode: 2020RSOS....701358H. doi: 10.1098/rsos.201358. PMC  7540804. PMID  33047070.
  164. ^ Alicia Grealy; Gifford H. Miller; Matthew J. Phillips; Simon J. Clarke; Marilyn Fogel; Diana Patalwala; Paul Rigby; Alysia Hubbard; Beatrice Demarchi; Matthew Collins; Meaghan Mackie; Jorune Sakalauskaite; Josefin Stiller; Julia A. Clarke; Lucas J. Legendre; Kristina Douglass; James Hansford; James Haile; Michael Bunce (2023). "Molecular exploration of fossil eggshell uncovers hidden lineage of giant extinct bird". Nature Communications. 14 (1). 914. Bibcode: 2023NatCo..14..914G. doi: 10.1038/s41467-023-36405-3. PMC  9974994. PMID  36854679.
  165. ^ Zbigniew M. Bocheński; Teresa Tomek; Krzysztof Wertz; Johannes Happ; Małgorzata Bujoczek; Ewa Świdnicka (2018). "Articulated avian remains from the early Oligocene of Poland adds to our understanding of Passerine evolution". Palaeontologia Electronica. 21 (2): Article number 21.2.32A. doi: 10.26879/843.
  166. ^ Min Wang; Zhonghe Zhou (2018). "A new confuciusornithid (Aves: Pygostylia) from the Early Cretaceous increases the morphological disparity of the Confuciusornithidae". Zoological Journal of the Linnean Society. 185 (2): 417–430. doi: 10.1093/zoolinnean/zly045.
  167. ^ N. Adam Smith; Aj M. DeBee; Julia A. Clarke (2018). "Systematics and phylogeny of the Zygodactylidae (Aves, Neognathae) with description of a new species from the early Eocene of Wyoming, USA". PeerJ. 6: e4950. doi: 10.7717/peerj.4950. PMC  6022727. PMID  29967716.
  168. ^ Charlie A. Navarro; Elizabeth Martin-Silverstone; Thomas L. Stubbs (2018). "Morphometric assessment of pterosaur jaw disparity". Royal Society Open Science. 5 (4): 172130. Bibcode: 2018RSOS....572130N. doi: 10.1098/rsos.172130. PMC  5936930. PMID  29765665.
  169. ^ Jordan Bestwick; David M. Unwin; Richard J. Butler; Donald M. Henderson; Mark A. Purnell (2018). "Pterosaur dietary hypotheses: a review of ideas and approaches". Biological Reviews. 93 (4): 2021–2048. doi: 10.1111/brv.12431. PMC  6849529. PMID  29877021.
  170. ^ Alexander W.A. Kellner (2015). "Comments on Triassic pterosaurs with discussion about ontogeny and description of new taxa". Anais da Academia Brasileira de Ciências. 87 (2): 669–689. doi: 10.1590/0001-3765201520150307. PMID  26131631.
  171. ^ Fabio M. Dalla Vecchia (2018). "Comments on Triassic pterosaurs with a commentary on the "ontogenetic stages" of Kellner (2015) and the validity of Bergamodactylus wildi". Rivista Italiana di Paleontologia e Stratigrafia. 124 (2): 317–341. doi: 10.13130/2039-4942/10099.
  172. ^ David M. Unwin; David M. Martill (2018). "Systematic reassessment of the first Jurassic pterosaur from Thailand". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 181–186. doi: 10.1144/SP455.13. ISBN  978-1-78620-317-5. S2CID  133811716.
  173. ^ Kai R.K. Jäger; Helmut Tischlinger; Georg Oleschinski; P. Martin Sander (2018). "Goldfuß was right: Soft part preservation in the Late Jurassic pterosaur Scaphognathus crassirostris revealed by reflectance transformation imaging (RTI) and UV light and the auspicious beginnings of paleo-art". Palaeontologia Electronica. 21 (3): Article number 21.3.4T. doi: 10.26879/713.
  174. ^ Martill, David M.; Ibrahim, Nizar; Bouaziz, Samir (2018). "A giant pterosaur in the Early Cretaceous (Albian) of Tunisia". Journal of African Earth Sciences. 147: 331–337. Bibcode: 2018JAfES.147..331M. doi: 10.1016/j.jafrearsci.2018.05.008. ISSN  1464-343X. S2CID  135248088.
  175. ^ S. Christopher Bennett (2018). "New smallest specimen of the pterosaur Pteranodon and ontogenetic niches in pterosaurs". Journal of Paleontology. 92 (2): 254–271. Bibcode: 2018JPal...92..254B. doi: 10.1017/jpa.2017.84. S2CID  90893067.
  176. ^ Dana J. Ehret; T. Lynn Harrell, Jr. (2018). "Feeding traces on a Pteranodon (Reptilia: Pterosauria) bone from the Late Cretaceous (Campanian) Mooreville Chalk in Alabama, USA". PALAIOS. 33 (9): 414–418. Bibcode: 2018Palai..33..414E. doi: 10.2110/palo.2018.024. S2CID  135332458.
  177. ^ David W.E. Hone; Mark P. Witton; Michael B. Habib (2018). "Evidence for the Cretaceous shark Cretoxyrhina mantelli feeding on the pterosaur Pteranodon from the Niobrara Formation". PeerJ. 6: e6031. doi: 10.7717/peerj.6031. PMC  6296329. PMID  30581660.
  178. ^ Leonardo D. Ortiz David; Bernardo J. González Riga; Alexander W.A. Kellner (2018). "Discovery of the largest pterosaur from South America". Cretaceous Research. 83: 40–46. Bibcode: 2018CrRes..83...40O. doi: 10.1016/j.cretres.2017.10.004. hdl: 11336/41234.
  179. ^ D. W. E. Hone; S. Jiang; X. Xu (2018). "A taxonomic revision of Noripterus complicidens and Asian members of the Dsungaripteridae". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 149–157. doi: 10.1144/SP455.8. ISBN  978-1-78620-317-5. S2CID  131992645.
  180. ^ Richard Buchmann; Taissa Rodrigues; Sabrina Polegario; Alexander W.A. Kellner (2018). "New information on the postcranial skeleton of the Thalassodrominae (Pterosauria, Pterodactyloidea, Tapejaridae)". Historical Biology: An International Journal of Paleobiology. 30 (8): 1139–1149. doi: 10.1080/08912963.2017.1343314. S2CID  133637418.
  181. ^ Rodrigo V. Pêgas; Fabiana R. Costa; Alexander W.A. Kellner (2018). "New information on the osteology and a taxonomic revision of the genus Thalassodromeus (Pterodactyloidea, Tapejaridae, Thalassodrominae)". Journal of Vertebrate Paleontology. 38 (2): e1443273. Bibcode: 2018JVPal..38E3273P. doi: 10.1080/02724634.2018.1443273. S2CID  90477315.
  182. ^ Gregory F. Funston; Elizabeth Martin-Silverstone; Philip J. Currie (2017). "The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion". FACETS. 2: 559–574. doi: 10.1139/facets-2016-0067.
  183. ^ Gregory F. Funston; Elizabeth Martin-Silverstone; Philip J. Currie (2018). "Correction: The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion". FACETS. 3: 192–194. doi: 10.1139/facets-2018-0006.
  184. ^ Mátyás Vremir; Gareth Dyke; Zoltán Csiki-Sava; Dan Grigorescu; Eric Buffetaut (2018). "Partial mandible of a giant pterosaur from the uppermost Cretaceous (Maastrichtian) of the Hațeg Basin, Romania". Lethaia. 51 (4): 493–503. doi: 10.1111/let.12268.
  185. ^ a b c d e Nicholas R. Longrich; David M. Martill; Brian Andres (2018). "Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary". PLOS Biology. 16 (3): e2001663. doi: 10.1371/journal.pbio.2001663. PMC  5849296. PMID  29534059.
  186. ^ Brooks B. Britt; Fabio M. Dalla Vecchia; Daniel J. Chure; George F. Engelmann; Michael F. Whiting; Rodney D. Scheetz (2018). "Caelestiventus hanseni gen. et sp. nov. extends the desert-dwelling pterosaur record back 65 million years". Nature Ecology & Evolution. 2 (9): 1386–1392. doi: 10.1038/s41559-018-0627-y. PMID  30104753. S2CID  51984440.
  187. ^ Megan L. Jacobs; David M. Martill; Nizar Ibrahim; Nick Longrich (2019). "A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa". Cretaceous Research. 95: 77–88. Bibcode: 2019CrRes..95...77J. doi: 10.1016/j.cretres.2018.10.018. S2CID  134439172.
  188. ^ Borja Holgado; Rodrigo V. Pêgas (2020). "A taxonomic and phylogenetic review of the anhanguerid pterosaur group Coloborhynchinae and the new clade Tropeognathinae". Acta Palaeontologica Polonica. 65. doi: 10.4202/app.00751.2020.
  189. ^ Michael O’Sullivan; David M. Martill (2018). "Pterosauria of the Great Oolite Group (Bathonian, Middle Jurassic) of Oxfordshire and Gloucestershire, England". Acta Palaeontologica Polonica. 63 (4): 617–644. doi: 10.4202/app.00490.2018.
  190. ^ Romain Vullo; Géraldine Garcia; Pascal Godefroit; Aude Cincotta; Xavier Valentin (2018). "Mistralazhdarcho maggii, gen. et sp. nov., a new azhdarchid pterosaur from the Upper Cretaceous of southeastern France". Journal of Vertebrate Paleontology. 38 (4): (1)–(16). doi: 10.1080/02724634.2018.1502670. S2CID  91265861.
  191. ^ Stanislas Rigal; David M. Martill; Steven C. Sweetman (2018). "A new pterosaur specimen from the Upper Tunbridge Wells Sand Formation (Cretaceous, Valanginian) of southern England and a review of Lonchodectes sagittirostris (Owen 1874)". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 221–232. doi: 10.1144/SP455.5. ISBN  978-1-78620-317-5. S2CID  133080548.
  192. ^ Claudio Labita; David M. Martill (2020). "An articulated pterosaur wing from the Upper Cretaceous (Maastrichtian) phosphates of Morocco". Cretaceous Research. 119: Article number 104679. doi: 10.1016/j.cretres.2020.104679. S2CID  226328607.
  193. ^ Junchang Lü; Qingjin Meng; Baopeng Wang; Di Liu; Caizhi Shen; Yuguang Zhang (2018). "Short note on a new anurognathid pterosaur with evidence of perching behaviour from Jianchang of Liaoning Province, China". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 95–104. doi: 10.1144/SP455.16. ISBN  978-1-78620-317-5. S2CID  219196969.
  194. ^ David M. Martill; David M. Unwin; Nizar Ibrahim; Nick Longrich (2018). "A new edentulous pterosaur from the Cretaceous Kem Kem beds of south eastern Morocco". Cretaceous Research. 84: 1–12. Bibcode: 2018CrRes..84....1M. doi: 10.1016/j.cretres.2017.09.006. hdl: 2381/41058.
  195. ^ Sterling J. Nesbitt; Richard J. Butler; Martín D. Ezcurra; Alan J. Charig; Paul M. Barrett (2018). "The anatomy of Teleocrater rhadinus, an early avemetatarsalian from the lower portion of the Lifua Member of the Manda Beds (Middle Triassic)" (PDF). Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 142–177. doi: 10.1080/02724634.2017.1396539. S2CID  90421480.
  196. ^ Rodrigo Temp Müller; Max Cardoso Langer; Sérgio Dias-da-Silva (2018). "Ingroup relationships of Lagerpetidae (Avemetatarsalia: Dinosauromorpha): a further phylogenetic investigation on the understanding of dinosaur relatives". Zootaxa. 4392 (1): 149–158. doi: 10.11646/zootaxa.4392.1.7. PMID  29690420.
  197. ^ Adam D. Marsh (2018). "A new record of Dromomeron romeri Irmis et al., 2007 (Lagerpetidae) from the Chinle Formation of Arizona, U.S.A." PaleoBios. 35: ucmp_paleobios_42075.
  198. ^ Federico L. Agnolín; Sebastián Rozadilla (2018). "Phylogenetic reassessment of Pisanosaurus mertii Casamiquela, 1967, a basal dinosauriform from the Late Triassic of Argentina". Journal of Systematic Palaeontology. 16 (10): 853–879. doi: 10.1080/14772019.2017.1352623. hdl: 11336/47253. S2CID  90655527.
  199. ^ Matthew G. Baron; Megan E. Williams (2018). "A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution". Acta Palaeontologica Polonica. 63 (1): 129–145. doi: 10.4202/app.00372.2017.
  200. ^ Grzegorz Niedźwiedzki; Ewa Budziszewska-Karwowska (2018). "A new occurrence of the Late Triassic archosaur Smok in southern Poland". Acta Palaeontologica Polonica. 63 (4): 703–712. doi: 10.4202/app.00505.2018.
  201. ^ Volkan Sarıgül; Federico Agnolín; Sankar Chatterjee (2018). "Description of a multitaxic bone assemblage from the Upper Triassic Post Quarry of Texas (Dockum group), including a new small basal dinosauriform taxon" (PDF). Historia Natural, Tercera Serie. 8 (1): 5–24.
From Wikipedia, the free encyclopedia

List of years in archosaur paleontology
In science
2015
2016
2017
2018
2019
2020
2021
In paleontology
2015
2016
2017
2018
2019
2020
2021
In paleobotany
2015
2016
2017
2018
2019
2020
2021
In arthropod paleontology
2015
2016
2017
2018
2019
2020
2021
In paleoentomology
2015
2016
2017
2018
2019
2020
2021
In paleomalacology
2015
2016
2017
2018
2019
2020
2021
In paleoichthyology
2015
2016
2017
2018
2019
2020
2021
In reptile paleontology
2015
2016
2017
2018
2019
2020
2021
In mammal paleontology
2015
2016
2017
2018
2019
2020
2021

The year 2018 in archosaur paleontology was eventful. Archosaurs include the only living dinosaur group — birds — and the reptile crocodilians, plus all extinct dinosaurs, extinct crocodilian relatives, and pterosaurs. Archosaur palaeontology is the scientific study of those animals, especially as they existed before the Holocene Epoch began about 11,700 years ago. The year 2018 in paleontology included various significant developments regarding archosaurs.

This article records new taxa of fossil archosaurs of every kind that have been described during the year 2018, as well as other significant discoveries and events related to paleontology of archosaurs that occurred in the year 2018.

General research

Pseudosuchians

Research

  • A study on the jaw musculature and biomechanics of Venaticosuchus rusconii based on rediscovered cranial materials is published by Von Baczko (2018). [13]
  • Three differently sized braincases diagnosable as belonging to Parringtonia gracilis are described from the Triassic Manda Beds of Tanzania by Nesbitt et al. (2018). [14]
  • A study on the histology of osteoderms of Late Triassic aetosaurs from South America, including Aetosauroides scagliai, Aetobarbakinoides brasiliensis and Neoaetosauroides engaeus, is published by Cerda, Desojo & Scheyer (2018). [15]
  • Description of new skull material of Aetosauroides scagliai from the Santa Maria Supersequence ( Brazil) and a study on the phylogenetic relationships of this species is published by Biacchi Brust et al. (2018). [16]
  • The first known natural endocast of an aetosaur (Neoaetosauroides engaeus) is described by von Baczko, Taborda & Desojo (2018). [17]
  • Redescription of the aetosaur species Calyptosuchus wellesi is published by Parker (2018). [18]
  • A study on the anatomy of the skeleton of Coahomasuchus chathamensis and on the phylogenetic relationships of aetosaurs is published by Hoffman, Heckert & Zanno (2018). [19]
  • A restudy of the referred material of Stagonolepis robertsoni housed at the Natural History Museum, London, evaluating the utility of this material for examining the phylogenetic relationships of S. robertsoni, is published by Parker (2018). [20]
  • Description of the forelimbs of Stagonolepis olenkae and a study on the probable use of the forelimbs by members of this species is published by Dróżdż (2018). [21]
  • New information on the bonebed from the Triassic Badong Formation in Sangzhi County ( Hunan, China) preserving the majority of the known fossil material of Lotosaurus adentus is published by Hagen et al. (2018), who also reassess the provenance and age of the deposit. [22]
  • A study on the anatomy of the best-preserved skeleton of Prestosuchus chiniquensis, as well as on the phylogenetic relationships of this species, is published online by Roberto-Da-Silva et al. (2018). [23]
  • A study on the anatomy of the backbone of Poposaurus langstoni is published by Stefanic & Nesbitt (2018). [24]
  • A study on the morphology of the secondary palate in shartegosuchids, based on data from a new specimen of Shartegosuchus from the Ulan Malgait Formation ( Mongolia), is published by Dollman et al. (2018). [25]
  • Description of the braincase and the brain endocast, vasculature, inner ear, and paratympanic pneumatic cavities of Steneosaurus bollensis and Cricosaurus araucanensis is published by Herrera, Leardi & Fernández (2018). [26]
  • A skull of a member of the genus Tyrannoneustes is described from the Middle Jurassic ( Callovian) of Germany by Waskow, Grzegorczyk & Sander (2018). [27]
  • New specimen of Neuquensuchus universitas, providing new information on the skeletal anatomy of members of the species, is described from the Upper Cretaceous ( Santonian) Bajo de la Carpa Formation ( Argentina) by Lio et al. (2018). [28]
  • A redescription of the anatomy of the skull of Notosuchus terrestris is published by Barrios et al. (2018). [29]
  • A study on the anatomy of the skull of Morrinhosuchus luziae is published by Iori et al. (2018). [30]
  • A study on the anatomic structures and tooth wear related to mastication in Caipirasuchus is published by Iori & Carvalho (2018). [31]
  • A study on the taphonomy of the baurusuchid specimens (as well as non-avian theropods and titanosaur sauropod dinosaurs) from the Upper Cretaceous Bauru Group ( Brazil) is published by Bandeira et al. (2018), who argue that low diversity of known theropods in the Bauru Group might be caused by preservational biases, and does not conclusively indicate that baurusuchids outcompeted theropods as top predators in this area. [32]
  • A study on the evolution of the skull morphology of baurusuchids is published by Godoy et al. (2018). [33]
  • New baurusuchid fossils are described from the Upper Cretaceous ( Santonian) Bajo de la Carpa Formation ( Argentina) by Leardi, Pol & Gasparini (2018). [34]
  • A study on the bone microanatomy of Pepesuchus deiseae is published by Sena et al. (2018). [35]
  • Neosuchian crocodylomorph fossils are described from the Bathonian Peski locality in the Moscow Region ( Russia) by Pashchenko et al. (2018), who note the similarity of Bathonian vertebrate faunas of the Moscow Region, United Kingdom, Western Siberia and Kyrgyzstan, which they interpret as indicative of faunal homogeneity on the territory of Laurasia. [36]
  • New fossil remains of Sarcosuchus are described from the Aptian- Albian deposits of the Tataouine Basin ( Tunisia) by Dridi (2018). [37]
  • A revision of Trematochampsa taqueti and all fossil material assigned to the species is published by Meunier & Larsson (2018). [38]
  • Description of pelvic and femoral remains of allodaposuchids from the Upper Cretaceous of the Lo Hueco fossil site ( Spain) is published by de Celis, Narváez & Ortega (2018). [39]
  • Fossils of a eusuchian crocodyliform are described from the Lower Cretaceous ( Aptian) Khok Kruat Formation ( Thailand) by Kubo et al. (2018), representing the oldest record of Asian eusuchians reported so far. [40]
  • Description of a new skull of Susisuchus anatoceps from the Lower Cretaceous Crato Formation ( Brazil), providing new information on the anatomy of this species, and a study on the phylogenetic relationships of Susisuchus is published by Leite & Fortier (2018). [41]
  • A study on the taphonomic history of the holotype, paratypes and referred specimens of Isisfordia duncani is published by Syme & Salisbury (2018). [42]
  • A study on the phylogenetic relationships of Thoracosaurus, Eothoracosaurus, Eosuchus, Eogavialis and Argochampsa, evaluating whether they were closely related to the gharial, is published by Lee & Yates (2018). [43]
  • A study on the length proportion of limb elements in extant and fossil alligatoroid and crocodyloid crocodylians, as well as on the correlation of limb morphology and skull shape in these groups, is published by Iijima, Kubo & Kobayashi (2018). [44]
  • New specimen of Bottosaurus harlani is described from the Rowan Fossil Quarry, a Cretaceous–Paleogene locality in Mantua Township ( New Jersey, United States) by Cossette & Brochu (2018). [45]
  • A reassessment of the anatomy and phylogenetic relationships of Asiatosuchus nanlingensis and Eoalligator chunyii is published by Wu, Li & Wang (2018), who reinstate the latter taxon as a species distinct from the former one. [46]
  • Redescription of the holotype specimen of Mourasuchus arendsi from the Urumaco Formation of Venezuela is published online by Cidade et al. (2018). [47]
  • A study on the ontogenetic changes of the skull shape in extant caimans and its implications for the validity of the Miocene species Melanosuchus fisheri is published by Foth et al. (2018). [48]
  • A study on the histology of long bones of extant yacare caiman and fossil caimans from the Upper Miocene–Pliocene Solimões Formation (Brazil) is published online by Andrade et al. (2018). [49]
  • A study on two fossil specimens of caimans from the late Pleistocene and early Holocene of Brazil, attempting to assign the fossils’ identity to one of the extant caiman species on the basis of records of their current distribution and paleoclimatic data, is published by Eduardo et al. (2018). [50]
  • A fragment of a mandible of a member of the genus Gryposuchus is described from the Miocene (≈18 Ma) Castillo Formation ( Venezuela) by Solórzano, Núñez-Flores & Rincón (2018), representing the earliest record of the genus in South America reported so far. [51]
  • A revision of the type species of the genus Gryposuchus, G. jessei, is published by Souza et al. (2018). [52]
  • A revision of crocodilian fossils and taxa from the Calvert Cliffs ( United States) is published by Weems (2018). [53]
  • Partial crocodylian skull from the Pleistocene of Taiwan, formerly regarded as lost during World War II, is rediscovered and redescribed by Ito et al. (2018), who assign this specimen to the genus Toyotamaphimeia. [54]
  • Fossils of large crocodylians, as well as tortoise fossils with feeding traces on them, are described from the Pleistocene of Aldabra ( Seychelles) by Scheyer et al. (2018), who interpret their findings as indicating the occurrence of a predator–prey interaction between crocodylians and giant tortoises on Aldabra during the Late Pleistocene. [55]
  • Late Quaternary fossils representing a locally extinct population of the Cuban crocodile (Crocodylus rhombifer) are reported from two underwater caves in the Dominican Republic by Morgan et al. (2018). [56]
  • A new large and well-preserved specimen of Prestosuchus chiniquensis is published by Roberto-da-Silva et al. (2018). [57]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Aktiogavialis caribesi [58]

Sp. nov

Valid

Salas-Gismondi et al.

Late Miocene

Urumaco Formation

  Venezuela

Anteophthalmosuchus epikrator [59]

Sp. nov

Valid

Ristevski et al.

Early Cretaceous

Wessex Formation

  United Kingdom

A goniopholidid.

Barrosasuchus [60]

Gen. et sp. nov

Valid

Coria et al.

Late Cretaceous ( Santonian)

Bajo de la Carpa Formation

  Argentina

A peirosaurid crocodyliform. Genus includes new species B. neuquenianus. Announced in 2018; the final version of the article naming it was published in 2019.

Caipirasuchus mineirus [61]

Sp. nov

Valid

Martinelli et al.

Late Cretaceous

Adamantina Formation

  Brazil

A sphagesaurid crocodyliform.

Dadagavialis [58]

Gen. et sp. nov

Valid

Salas-Gismondi et al.

Early Miocene

Cucaracha Formation

  Panama

A gryposuchine gavialoid. Genus includes new species D. gunai.

Jiangxisuchus [62]

Gen. et sp. nov

Valid

Li, Wu & Rufolo

Late Cretaceous ( Maastrichtian)

Nanxiong Formation

  China

A member of Crocodyloidea. Genus includes new species J. nankangensis. Announced in 2018; the final version of the article naming it was published in 2019.

Kinesuchus [63]

Gen. et sp. nov

Valid

Filippi, Barrios & Garrido

Late Cretaceous ( Santonian)

Bajo de la Carpa Formation

  Argentina

A peirosaurid crocodyliform. The type species is K. overoi.

Magyarosuchus [64]

Gen. et sp. nov

Valid

Ősi et al.

Early Jurassic ( Toarcian)

Kisgerecse Marl Formation

  Hungary

A member of Metriorhynchoidea. The type species is M. fitosi.

Maledictosuchus nuyivijanan [65]

Sp. nov

Valid

Barrientos-Lara, Alvarado-Ortega & Fernández

Late Jurassic ( Kimmeridgian)

Sabinal Formation

  Mexico

Mandasuchus [66]

Gen. et sp. nov

Valid

Butler et al.

Triassic

Manda Formation

  Tanzania

An early member of Paracrocodylomorpha belonging to the group Loricata. The type species is M. tanyauchen.

Pagosvenator [67]

Gen. et sp. nov

Valid

Lacerda, de França & Schultz

MiddleLate Triassic

Dinodontosaurus Assemblage Zone of the Santa Maria Supersequence

  Brazil

A member of the family Erpetosuchidae. Genus includes new species P. candelariensis.

Portugalosuchus [68]

Gen. et sp. nov

Valid

Mateus, Puértolas-Pascual & Callapez

Late Cretaceous ( Cenomanian)

Tentugal Formation

  Portugal

A member of Eusuchia, possibly the oldest known member of Crocodilia. Genus includes new species P. azenhae.

Protocaiman [69]

Gen. et sp. nov

Valid

Bona et al.

Paleocene ( Danian)

Salamanca Formation

  Argentina

A relative of caimans. Genus includes new species P. peligrensis.

Roxochampsa [70]

Gen. et comb. nov

Valid

Piacentini Pinheiro et al.

Late Cretaceous (late Campanian–early Maastrichtian)

Adamantina Formation
Presidente Prudente Formation

  Brazil

A crocodyliform belonging to the family Itasuchidae. The type species is " Goniopholis" paulistanus Roxo (1936).

Theriosuchus morrisonensis [71]

Sp. nov

Valid

Foster

Late Jurassic

Morrison Formation

  United States
(  Wyoming)

A new species of the atoposaurid Theriosuchus and the first known from North America.

Wahasuchus [72]

Gen. et sp. nov

Valid

Saber et al.

Late Cretaceous ( Campanian)

Quseir Formation

  Egypt

A member of Mesoeucrocodylia of uncertain phylogenetic placement, possibly a neosuchian. Genus includes new species W. egyptensis.

Non-avian dinosaurs

Multiple studies were conducted, discoveries made, and taxa discovered related to non-avian dinosaurs, including the Acantholipan [73] in Mexico. Evidence was discovered of cuticle preservation on theropod eggshells from the Nanxiong Group in China and the Two Medicine Formation in Montana, United States is presented by Yang et al. (2018).. [74] A new specimen of Sinovenator changii, including a nearly complete skull and providing new information on the anatomy of the skull of this species, was described from the Lower Cretaceous Yixian Formation ( China) by Yin, Pei & Zhou (2018). [75]

Birds

Research

  • Dinosaur-like ossification pattern of skull bones (formation of the ossification centres of the prefrontal and postorbital) is reported in bird embryos by Smith-Paredes et al. (2018). [76]
  • A study evaluating whether eggs of early birds from the Mesozoic could have borne the weight of incubating adults is published by Deeming & Mayr (2018). [77]
  • A study on the formation of the pygostyle in extant birds and its evolution in Mesozoic birds is published by Rashid et al. (2018), who interpret their findings as indicating that the lack of pygostyle in Zhongornis haoae and other juvenile Mesozoic birds does not necessarily indicate that they are intermediate species in the long- to short-tailed evolutionary transition, and that feathered coelurosaur tail preserved in Burmese amber which was described by Xing et al. (2016) [78] might be avian. [79]
  • A study on the anatomy of the braincase of birds and non-avian dinosaurs, evaluating whether there is a link between changes in brain anatomy and loss of flight, is published by Gold & Watanabe (2018). [80]
  • A study on the preservation potential of feather keratin in the fossil record is published by Schweitzer et al. (2018); [81] the study is subsequently criticized by Saitta & Vinther (2019). [82]
  • Description of 31 samples of Cretaceous amber from Myanmar that contain feathers, providing new information on the morphology and variability of rachis-dominated feathers of Cretaceous birds, is published by Xing et al. (2018). [83]
  • A pseudoscorpion attached to barbules of a contour feather, possibly documenting a phoretic association between pseudoscorpions and Mesozoic birds, is described from the Cretaceous amber from Myanmar by Xing, McKellar & Gao (2018). [84]
  • A redescription of the bird trackway originally labeled Aquatilavipes anhuiensis from the Lower Cretaceous Qiuzhuang Formation ( Anhui, China) is published by Xing et al. (2018), who transfer this ichnospecies to the ichnogenus Koreanaornis. [85]
  • Early Cretaceous ( Aptian) bird footprints are described from the Kitadani Formation ( Japan) by Imai, Tsukiji & Azuma (2018). [86]
  • New avian ichnospecies Ignotornis canadensis is described from the Lower Cretaceous ( Albian) Gates Formation ( Canada) by Buckley, McCrea & Xing (2018). [87]
  • Ignotornid tracks are described from the Lower Cretaceous of Jiangsu ( China) by Xing et al. (2018), representing the first known record of the ichnogenus Goseongornipes from China. [88]
  • The twelfth specimen of Archaeopteryx, the oldest reported so far, is described by Rauhut, Foth & Tischlinger (2018). [89] This was named as the new genus Alcmonavis in 2019.
  • A study on the geometric properties of the wing bones of Archaeopteryx is published by Voeten et al. (2018), who interpret their findings as indicating that Archaeopteryx was able to actively use its wings to take to the air (using a different flight stroke than used by extant birds). [90]
  • Gastrolith masses preserved in five specimens of Jeholornis will be described by O'Connor et al. (2018). [91]
  • A new confuciusornithid specimen, most similar to Eoconfuciusornis zhengi but also sharing traits with Confuciusornis, will be described from the Upper Cretaceous Huajiying Formation ( China) by Navalón et al. (2018). [92]
  • A study on the morphology of the skull of Confuciusornis sanctus is published by Elżanowski, Peters & Mayr (2018). [93]
  • An exceptionally-preserved specimen of Confuciusornis, preserving elaborate plumage patterning, is described from the Lower Cretaceous deposits in Fengning County ( Hebei Province, China) estimated to be equivalent with the Dawangzhangzi Member of the Yixian Formation by Li et al. (2018). [94]
  • An articulated skeleton of an enantiornithine bird preserved in the Cretaceous amber from Myanmar is described by Xing et al. (2018). [95]
  • An early juvenile enantiornithine specimen, providing new information on the osteogenesis in members of Enantiornithes, is described from the Lower Cretaceous Las Hoyas deposits of Spain by Knoll et al. (2018). [96]
  • A study evaluating the capacity of the enantiornithines Concornis lacustris and Eoalulavis hoyasi to use intermittent flight (alternating flapping and gliding phases) is published by Serrano et al. (2018). [97]
  • A study on the morphology and diversity of enantiornithine coracoids from the Upper Cretaceous Bissekty Formation (Dzharakuduk locality, Uzbekistan) is published by Panteleev (2018). [98]
  • O’Connor et al. (2018) propose criteria for identifying medullary bone in fossils, and report probable medullary bone from a pengornithid enantiornithine specimen from the Lower Cretaceous Jiufotang Formation ( China). [99]
  • A specimen of Archaeorhynchus spathula with extensive soft tissue preservation, revealing a tail morphology previously unknown in Mesozoic birds and an exceptional occurrence of fossilized lung tissue, is described from the Lower Cretaceous Jiufotang Formation ( China) by Wang et al. (2018). [100]
  • Wang et al. (2018) report the presence of distinct salt gland fossa on the frontal of a bird similar to Iteravis huchzermeyeri and Gansus zheni from the Lower Cretaceous Sihedang locality (Jiufotang Formation, China); the authors also consider I. huchzermeyeri and G. zheni to be probably synonymous. [101]
  • Abundant black flies, thought to have inhabited the same environments as Cretaceous ornithurine birds and most likely fed on them, are described from the Santonian Taimyr amber ( Russia) by Perkovsky, Sukhomlin & Zelenkov (2018), who use these insects as an indicator of a bird community, and argue that advanced ornithuromorph birds might have originated at higher latitudes. [102]
  • Field et al. (2018) report new specimens and previously overlooked elements of the holotype of Ichthyornis dispar, and generate a nearly complete three-dimensional reconstruction of the skull of this species. [103]
  • A study on the impact of the widespread destruction of forests during the Cretaceous–Paleogene extinction event on bird evolution, as indicated by ancestral state reconstructions of neornithine ecology and inferences about enantiornithine ecology, is published by Field et al. (2018), who interpret their findings as indicating that the global forest collapse at the end of the Cretaceous caused extinction of predominantly tree-dwelling birds, while bird groups that survived the extinction and gave rise to extant birds were non-arboreal. [104]
  • A study on the evolution of the anatomy of the crown-bird skull is published by Felice & Goswami (2018), who also present a hypothetical reconstruction of the ancestral crown-bird skull. [105]
  • A fossil tinamou belonging to the genus Eudromia, exceeding the size range of living species of the genus, is described from the Lujanian sediments in Marcos Paz County ( Buenos Aires Province, Argentina) by Cenizo et al. (2018). [106]
  • A study on the dietary behavior of four species of the moa and their interactions with parasites based on data from their coprolites is published by Boast et al. (2018). [107]
  • A study on the seeds preserved in moa coprolites is published by Carpenter et al. (2018), who question the hypothesis that some of the largest-seeded plants of New Zealand were dispersed by moas. [108]
  • A study on the genetic and morphological diversity of the emus, including extinct island populations, is published by Thomson et al. (2018). [109]
  • A study on the timing of first human arrival in Madagascar, as indicated by evidence of prehistoric human modification of multiple elephant bird postcranial elements, is published by Hansford et al. (2018). [110]
  • A study on the anatomy of the brains of elephant birds Aepyornis maximus and A. hildebrandti, and on its implications for inferring the ecology and behaviour of these birds, is published by Torres & Clarke (2018). [111]
  • A model of development of bony pseudoteeth of the odontopterygiform birds is proposed by Louchart et al. (2018). [112]
  • A study on the phylogenetic relationships of the taxa assigned to the family Vegaviidae by Agnolín et al. (2017) [113] is published by Mayr et al. (2018). [114]
  • A study on the adaptations for filter-feeding (other than beak shape) in the feeding apparatus of modern ducks, evaluating whether they could be also found in the skull of Presbyornis, is published by Zelenkov & Stidham (2018), who argue that Presbyornis most likely was a poorly specialized filter-feeder. [115]
  • A study on the phylogenetic relationships of the species Chendytes lawi and the Labrador duck (Camptorhynchus labradorius) is published by Buckner et al. (2018). [116]
  • Schmidt (2018) interprets more than 1000 large, near-circular gravel mounds from western New South Wales ( Australia) as likely to be nest mounds constructed by an extinct bird, similar to the malleefowl but larger. [117]
  • A study on the phylogenetic relationships of Foro panarium is published by Field & Hsiang (2018), who consider this species to be a stem- turaco. [118]
  • Petralca austriaca, originally thought to be an auk, is reinterpreted as a member of Gaviiformes by Göhlich & Mayr (2018). [119]
  • Globuli ossei (subspherical structures of endochondral origin, inserted in the hypertrophic cartilage of long bones) are reported for the first time in a bird (a fossil penguin Delphinornis arctowskii from Antarctica) by Garcia Marsà, Tambussi & Cerda (2018). [120]
  • Redescription of the anatomy of the fossil penguin Madrynornis mirandus and a study on the phylogenetic relationships of this species is published by Degrange, Ksepka & Tambussi (2018). [121]
  • Fossil material attributed to the extinct Hunter Island penguin (Tasidyptes hunteri) is reinterpreted as assemblage of remains from three extant penguin species by Cole et al. (2018). [122]
  • A study on the history of penguin colonization of the Vestfold Hills ( Antarctica), indicating that penguins started colonizing the northern Vestfold Hills around 14.6 thousand years before present, is published by Gao et al. (2018). [123]
  • A study on the history of active and abandoned Adélie penguin colonies at Cape Adare ( Antarctica), based on new excavations and radiocarbon dating, is published by Emslie, McKenzie & Patterson (2018). [124]
  • A study on the mummified Adélie penguin carcasses and associated sediments from the Long Peninsula ( East Antarctica), and on their implications for inferring the causes of the abandonment of numerous penguin sub‐colonies in this area during the 2nd millennium, is published by Gao et al. (2018). [125]
  • New bird fossils, including the first reported tarsometatarsus of the plotopterid Tonsala hildegardae are described from the late Eocene/early Oligocene Makah Formation and the Oligocene Pysht Formation ( Washington state, United States) by Mayr & Goedert (2018), who name a new plotopterid subfamily Tonsalinae. [126]
  • A well-preserved scapula of a plotopterid, enabling the reconstruction of the triosseal canal in plotopterids, is described from the Oligocene Jinnobaru Formation ( Japan) by Ando & Fukata (2018). [127]
  • Fossil remains of the spectacled cormorant (Phalacrocorax perspicillatus) are described from the upper Pleistocene of Shiriya (northeast Japan) by Watanabe, Matsuoka & Hasegawa (2018). [128]
  • Extinct lowland kagu (Rhynochetos orarius) is reinterpreted as synonymous with extant kagu (Rhynochetos jubatus) by Theuerkauf & Gula (2018). [129]
  • A study on the phylogenetic relationships of the Rodrigues scops owl and Mauritius scops owl is published by Louchart et al. (2018). [130]
  • Fossils of the barn owl (Tyto alba) are described from the Dinaledi Chamber of the Rising Star Cave system ( South Africa) by Kruger & Badenhorst (2018), who also evaluate how these bird bones were introduced into the Dinaledi Chamber. [131]
  • New fossils of stem- mousebirds belonging to the family Sandcoleidae, providing new information on the anatomy of members of this family, are described from the Eocene of the Messel pit ( Germany) by Mayr (2018). [132]
  • Partial skeleton of an early member of Coraciiformes of uncertain generic and specific assignment, showing several previously unknown features of the skull and vertebral column of early coraciiforms, is described from the Lower Eocene (53.5–51.5 million years old) London Clay ( United Kingdom) by Mayr & Walsh (2018). [133]
  • New phorusrhacid fossils are described from the Pleistocene of Uruguay by Jones et al. (2018), providing evidence of survival of phorusrhacids until the end of the Pleistocene. [134]
  • A study on the phylogenetic relationships of the extinct Cuban macaw (Ara tricolor) is published by Johansson et al. (2018). [135]
  • A study on an ancient DNA of scarlet macaws recovered from archaeological sites in Chaco Canyon and the contemporaneous Mimbres area of New Mexico is published by George et al. (2018), who report low genetic diversity in this sample, and interpret their findings as indicating that people at an undiscovered Pre-Hispanic settlement dating between 900 and 1200 CE managed a macaw breeding colony outside their endemic range. [136]
  • A study on the bird fossils from the Olduvai Gorge site ( Tanzania) and their implications for inferring the environmental context of the site during the Oldowan- Acheulean transitional period is published by Prassack et al. (2018). [137]
  • A study on the bird fossil assemblage from the Pleistocene of the Rio Secco Cave (north-eastern Italy) and its implications for the palaeoenvironmental reconstructions of the site is published by Carrera et al. (2018). [138]
  • Oswald & Steadman (2018) report nearly 500 (probably late Pleistocene) bird fossils collected on New Providence ( The Bahamas) in 1958 and 1960. [139]
  • A study on the fossils of Pleistocene birds collected on Picard Island ( Seychelles) in 1987 is published by Hume, Martill & Hing (2018). [140]
  • A revision of non- passeriform landbird fossils from the Pleistocene of Shiriya (northeast Japan) is published by Watanabe, Matsuoka & Hasegawa (2018). [141]
  • Remains of 32 species of seabirds and related taxa are reported from the middle–late Pleistocene Shiriya local fauna (northeastern Japan) by Watanabe, Matsuoka & Hasegawa (2018). [142]
  • Description of Late Pleistocene bird fauna from Buso Doppio del Broion Cave ( Berici Hills, Italy), including fossils of the snowy owl and the northern hawk-owl (considered to be markers of a colder climate than the present one) and the first Italian Pleistocene fossil remains of the Eurasian wren and the black redstart, is published by Carrera et al. (2018). [143]
  • Bird eggshell fragments are described from the Fitterer Ranch locality within the Oligocene Brule Formation ( North Dakota, United States) by Lawver & Boyd (2018), who name a new ootaxon Metoolithus jacksonae. [144]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Aquila claudeguerini [145]

Sp. nov

Valid

Mourer‑Chauviré & Bonifay

Early Pleistocene

  France

A species of Aquila.

Ardenna davealleni [146]

Sp. nov

Valid

Tennyson & Mannering

Pliocene

  New Zealand

A species of Ardenna.

Chenoanas asiatica [147]

Sp. nov

Valid

Zelenkov et al.

Middle Miocene

  China
  Mongolia

A duck.

Cinclosoma elachum [148]

Sp. nov

Valid

Nguyen, Archer & Hand

Miocene

Riversleigh World Heritage Area

  Australia

A quail-thrush.

Ducula tihonireasini [149]

Sp. nov

Valid

Rigal, Kirch & Worthy

Holocene

  French Polynesia

An imperial pigeon.

Eogranivora [150]

Gen. et sp. nov

Valid

Zheng et al.

Early Cretaceous

Yixian Formation

  China

An early member of Ornithuromorpha. Genus includes new species E. edentulata.

Gettyia [151]

Gen. et comb. nov

Valid

Atterholt, Hutchison & O’Connor

Late Cretaceous ( Campanian)

Two Medicine Formation

  United States
(  Montana)

A member of Enantiornithes belonging to the family Avisauridae. The type species is " Avisaurus" gloriae Varricchio & Chiappe (1995).

Jinguofortis [152]

Gen. et sp. nov

Valid

Wang, Stidham & Zhou

Early Cretaceous

Dabeigou Formation

  China

A basal member of Pygostylia, probably a relative of Chongmingia. Genus includes new species J. perplexus.

Kischinskinia [153]

Gen. et sp. nov

Valid

Volkova & Zelenkov

Early Miocene

  Russia

A passerine belonging to the group Certhioidea. Genus includes new species K. scandens.

Litorallus [154]

Gen. et sp. nov

Valid

Mather et al.

Early Miocene ( Altonian)

Bannockburn Formation

  New Zealand

A rail. The type species is L. livezeyi.

Mirarce [151]

Gen. et sp. nov

Valid

Atterholt, Hutchison & O’Connor

Late Cretaceous (late Campanian)

Kaiparowits Formation

  United States
(  Utah)

A member of Enantiornithes belonging to the family Avisauridae. The type species is M. eatoni.

Muriwaimanu [155]

Gen. et comb. nov

Valid

Mayr et al.

Late Paleocene

Waipara Greensand

  New Zealand

An early penguin; a new genus for " Waimanu" tuatahi Ando, Jones & Fordyce in Slack et al. (2006).

Pandion pannonicus [156]

Sp. nov

Valid

Kessler

Late Oligocene

  Hungary

A species of Pandion.

Panraogallus [157]

Gen. et sp. nov

Li et al.

Late Miocene

Liushu Formation

  China

A member of the family Phasianidae. The type species is P. hezhengensis.

Priscaweka [154]

Gen. et sp. nov

Valid

Mather et al.

Early Miocene ( Altonian)

Bannockburn Formation

  New Zealand

A rail. The type species is P. parvales.

Rallus gracilipes [158]

Sp. nov

Valid

Takano & Steadman

Late Pleistocene

  The Bahamas

A rail, a species of Rallus.

Romainvillia kazakhstanensis [159]

Sp. nov

Valid

Zelenkov

Late Eocene

Kustovskaya Formation

  Kazakhstan

A member of Anseriformes belonging to the family Romainvillidae.

Scolopax mira ohyamai [160]

Subsp. nov.

Valid

Matsuoka & Hasegawa

Late Pleistocene

  Japan

An extinct subspecies of the Amami woodcock (Scolopax mira).

Sequiwaimanu [155]

Gen. et sp. nov

Valid

Mayr et al.

Middle Paleocene

Waipara Greensand

  New Zealand

An early penguin. Genus includes new species S. rosieae.

Vanellus liffyae [161]

Sp. nov.

Valid

De Pietri et al.

Late Pliocene

  Australia

A species of Vanellus.

Vorombe [162]

Gen. et comb. nov

Disputed

Hansford & Turvey

Holocene

  Madagascar

An elephant bird. The type species is " Aepyornis" titan Andrews (1894). Announced in 2018; the correction including the required ZooBank accession number was published in 2020. [163] Tentatively synonymised with Aepyornis maximus by Grealy et al. (2023). [164]

Winnicavis [165]

Gen. et sp. nov

Valid

Bocheński et al.

Oligocene ( Rupelian)

Menilite Formation

  Poland

A passerine of uncertain phylogenetic placement, approximately the size of a great tit. The type species is W. gorskii.

Yangavis [166]

Gen. et sp. nov

Valid

Wang & Zhou

Early Cretaceous ( Aptian)

Yixian Formation

  China

A member of the family Confuciusornithidae. Genus includes new species Y. confucii.

Zygodactylus grandei [167]

Sp. nov.

Valid

Smith, DeBee & Clarke

Early Eocene

Green River Formation

  United States
(  Wyoming)

A member of the family Zygodactylidae.

Pterosaurs

Research

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Alcione [185]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

  Morocco

A member of the family Nyctosauridae. The type species is A. elainus.

Barbaridactylus [185]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

  Morocco

A member of the family Nyctosauridae. The type species is B. grandis.

Caelestiventus [186]

Gen. et sp. nov

Valid

Britt et al.

Late Triassic (probably late Norian or Rhaetian)

Nugget Sandstone

  United States
(  Utah)

A relative of Dimorphodon. Genus includes new species C. hanseni.

Coloborhynchus fluviferox [187]

Sp. nov

Valid

Jacobs et al.

Cretaceous

Kem Kem Beds

  Morocco

Announced in 2018; the final version of the article naming it was published in 2019. Originally described as a species of Coloborhynchus, but subsequently transferred to the genus Nicorhynchus. [188]

Klobiodon [189]

Gen. et sp. nov

Valid

O’Sullivan & Martill

Middle Jurassic ( Bathonian)

Taynton Limestone Formation

  United Kingdom

A member of the family Rhamphorhynchidae. The type species is K. rochei.

Mistralazhdarcho [190]

Gen. et sp. nov

Valid

Vullo et al.

Late Cretaceous ( Campanian)

  France

A member of the family Azhdarchidae. Genus includes new species M. maggii.

Serradraco [191]

Gen. et comb. nov

Valid

Rigal, Martill & Sweetman

Early Cretaceous (late Valanginian or early Hauterivian)

Upper Tunbridge Wells Sand Formation

  United Kingdom

A pterodactyloid pterosaur; a new genus for " Pterodactylus" sagittirostris Owen (1874). Announced in 2017; the final version of the article naming it was published in 2018.

Simurghia [185]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

  Morocco

A member of the family Nyctosauridae. The type species is S. robusta.

Tethydraco [185]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin

  Morocco

A pterosaur of uncertain phylogenetic placement, might be a member of the family Pteranodontidae [185] or Azhdarchidae. [192] The type species is T. regalis.

Vesperopterylus [193]

Gen. et sp. nov

Valid

et al.

Early Cretaceous

Jiufotang Formation

  China

A member of the family Anurognathidae. Genus includes new species V. lamadongensis. Announced in 2017; the final version of the article naming it was published in 2018.

Xericeps [194]

Gen. et sp. nov

Valid

Martill et al.

Cretaceous ( Albian or early Cenomanian)

Kem Kem Beds

  Morocco

A member of Azhdarchoidea. The type species is X. curvirostris. Announced in 2017; the final version of the article naming it was published in 2018.

Other archosaurs

Research

  • A study on the anatomy of Teleocrater rhadinus is published by Nesbitt et al. (2018). [195]
  • A study on the phylogenetic relationships of lagerpetid dinosauromorphs is published by Müller, Langer & Dias-da-Silva (2018). [196]
  • New specimen of Dromomeron romeri (potentially representing the youngest known lagerpetid in North America, if not worldwide) is described from the Owl Rock Member of the Chinle Formation ( Arizona, United States) by Marsh (2018). [197]
  • A study on the phylogenetic relationships of Pisanosaurus mertii is published by Agnolín & Rozadilla (2018), who interpret the taxon as a likely silesaurid. [198]
  • Reevaluation of Caseosaurus crosbyensis and a study on the phylogenetic relationships of the species is published by Baron & Williams (2018). [199]
  • Fossils of a member of the genus Smok of uncertain specific assignment are described from the Upper Triassic Marciszów site (southern Poland) by Niedźwiedzki & Budziszewska-Karwowska (2018). [200]

New taxa

Name Novelty Status Authors Age Unit Location Notes Images

Soumyasaurus [201]

Gen. et sp. nov

Valid

Sarıgül, Agnolín & Chatterjee

Late Triassic

Tecovas Formation

  United States
(  Texas)

A member of Dinosauriformes, probably a member of the family Silesauridae. The type species is S. aenigmaticus.

References

  1. ^ Robert J. Brocklehurst; Emma R. Schachner; William I. Sellers (2018). "Vertebral morphometrics and lung structure in non-avian dinosaurs". Royal Society Open Science. 5 (10): 180983. doi: 10.1098/rsos.180983. PMC  6227937. PMID  30473845.
  2. ^ Gregory Paul (2019). "Comment on Brocklehurst et al.". Royal Society Open Science. 6 (2): Article ID 181872. Bibcode: 2019RSOS....681872P. doi: 10.1098/rsos.181872. PMC  6408402. PMID  30891298.
  3. ^ Armita R. Manafzadeh; Kevin Padian (2018). "ROM mapping of ligamentous constraints on avian hip mobility: implications for extinct ornithodirans". Proceedings of the Royal Society B: Biological Sciences. 285 (1879): 20180727. doi: 10.1098/rspb.2018.0727. PMC  5998106. PMID  29794053.
  4. ^ Henry P. Tsai; Kevin M. Middleton; John R. Hutchinson; Casey M. Holliday (2018). "Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia" (PDF). Journal of Vertebrate Paleontology. 38 (1): e1427593. Bibcode: 2018JVPal..38E7593T. doi: 10.1080/02724634.2017.1427593. S2CID  90296153.
  5. ^ Andrea Cau (2018). "The assembly of the avian body plan: a 160-million-year long process" (PDF). Bollettino della Società Paleontologica Italiana. 57 (1): 1–25. doi: 10.4435/BSPI.2018.01.
  6. ^ Edina Prondvai; Pascal Godefroit; Dominique Adriaens; Dong-Yu Hu (2018). "Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs". Scientific Reports. 8 (1): Article number 258. Bibcode: 2018NatSR...8..258P. doi: 10.1038/s41598-017-18218-9. PMC  5762864. PMID  29321475.
  7. ^ Maria E. McNamara; Fucheng Zhang; Stuart L. Kearns; Patrick J. Orr; André Toulouse; Tara Foley; David W. E. Hone; Chris S. Rogers; Michael J. Benton; Diane Johnson; Xing Xu; Zhonghe Zhou (2018). "Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds". Nature Communications. 9 (1): Article number 2072. Bibcode: 2018NatCo...9.2072M. doi: 10.1038/s41467-018-04443-x. PMC  5970262. PMID  29802246.
  8. ^ Chase D. Brownstein (2018). "Trace fossils on dinosaur bones reveal ecosystem dynamics along the coast of eastern North America during the latest Cretaceous". PeerJ. 6: e4973. doi: 10.7717/peerj.4973. PMC  6001717. PMID  29910985.
  9. ^ Li, Zhiheng; Zhou, Zhonghe; Clarke, Julia A. (2018). "Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs". PLOS ONE. 13 (6): e0198078. Bibcode: 2018PLoSO..1398078L. doi: 10.1371/journal.pone.0198078. ISSN  1932-6203. PMC  6010247. PMID  29924798.
  10. ^ Tariq Zouheir; Abdelkbir Hminna; Hendrik Klein; Abdelouahed Lagnaoui; Hafid Saber; Joerg W. Schneider (2018). "Unusual archosaur trackway and associated tetrapod ichnofauna from Irohalene member (Timezgadiouine formation, late Triassic, Carnian) of the Argana Basin, Western High Atlas, Morocco". Historical Biology: An International Journal of Paleobiology. 32 (5): 589–601. doi: 10.1080/08912963.2018.1513506. S2CID  91315646.
  11. ^ Martin Lockley; Rhett Burton; Lisa Grondel (2018). "A large assemblage of tetrapod tracks from the Cretaceous Naturita Formation, Cedar Canyon region, southwestern Utah". Cretaceous Research. 92: 108–121. Bibcode: 2018CrRes..92..108L. doi: 10.1016/j.cretres.2018.08.003. S2CID  135147296.
  12. ^ Ashley L. Ferguson; David J. Varricchio; Alex J. Ferguson (2018). "Nest site taphonomy of colonial ground-nesting birds at Bowdoin National Wildlife Refuge, Montana". Historical Biology: An International Journal of Paleobiology. 32 (7): 902–916. doi: 10.1080/08912963.2018.1546699. S2CID  91578187.
  13. ^ María B. Von Baczko (2018). "Rediscovered cranial material of Venaticosuchus rusconii enables the first jaw biomechanics in Ornithosuchidae (Archosauria: Pseudosuchia)". Ameghiniana. 55 (4): 365–379. doi: 10.5710/AMGH.19.03.2018.3170. hdl: 11336/99976. S2CID  134536703.
  14. ^ Sterling J. Nesbitt; Michelle R. Stocker; William G. Parker; Thomas A. Wood; Christian A. Sidor; Kenneth D. Angielczyk (2018). "The braincase and endocast of Parringtonia gracilis, a Middle Triassic suchian (Archosaur: Pseudosuchia)". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 122–141. doi: 10.1080/02724634.2017.1393431. S2CID  89657063.
  15. ^ Ignacio A. Cerda; Julia B. Desojo; Torsten M. Scheyer (2018). "Novel data on aetosaur (Archosauria, Pseudosuchia) osteoderm microanatomy and histology: palaeobiological implications". Palaeontology. 61 (5): 721–745. Bibcode: 2018Palgy..61..721C. doi: 10.1111/pala.12363. hdl: 11336/88404. S2CID  134920515.
  16. ^ Ana Carolina Biacchi Brust; Julia Brenda Desojo; Cesar Leandro Schultz; Voltaire Dutra Paes-Neto; Átila Augusto Stock Da-Rosa (2018). "Osteology of the first skull of Aetosauroides scagliai Casamiquela 1960 (Archosauria: Aetosauria) from the Upper Triassic of southern Brazil (Hyperodapedon Assemblage Zone) and its phylogenetic importance". PLOS ONE. 13 (8): e0201450. Bibcode: 2018PLoSO..1301450B. doi: 10.1371/journal.pone.0201450. PMC  6093665. PMID  30110362.
  17. ^ M. Belen von Baczko; Jeremías R.A. Taborda; Julia Brenda Desojo (2018). "Paleoneuroanatomy of the aetosaur Neoaetosauroides engaeus (Archosauria: Pseudosuchia) and its paleobiological implications among archosauriforms". PeerJ. 6: e5456. doi: 10.7717/peerj.5456. PMC  6109373. PMID  30155359.
  18. ^ William G. Parker (2018). "Redescription of Calyptosuchus (Stagonolepis) wellesi (Archosauria: Pseudosuchia: Aetosauria) from the Late Triassic of the Southwestern United States with a discussion of genera in vertebrate paleontology". PeerJ. 6: e4291. doi: 10.7717/peerj.4291. PMC  5798403. PMID  29416953.
  19. ^ Devin K. Hoffman; Andrew B. Heckert; Lindsay E. Zanno (2018). "Under the armor: X-ray computed tomographic reconstruction of the internal skeleton of Coahomasuchus chathamensis (Archosauria: Aetosauria) from the Upper Triassic of North Carolina, USA, and a phylogenetic analysis of Aetosauria". PeerJ. 6: e4368. doi: 10.7717/peerj.4368. PMC  5815331. PMID  29456892.
  20. ^ William G. Parker (2018). "Anatomical notes and discussion of the first described aetosaur Stagonolepis robertsoni (Archosauria: Suchia) from the Upper Triassic of Europe, and the use of plesiomorphies in aetosaur biochronology". PeerJ. 6: e5455. doi: 10.7717/peerj.5455. PMC  6118205. PMID  30186682.
  21. ^ Dawid Dróżdż (2018). "Osteology of a forelimb of an aetosaur Stagonolepis olenkae (Archosauria: Pseudosuchia: Aetosauria) from the Krasiejów locality in Poland and its probable adaptations for a scratch-digging behavior". PeerJ. 6: e5595. doi: 10.7717/peerj.5595. PMC  6173166. PMID  30310738.
  22. ^ Cedric J. Hagen; Eric M. Roberts; Corwin Sullivan; Jun Liu; Yanyin Wang; Prince C. Owusu Agyemang; Xing Xu (2018). "Taphonomy, geological age, and paleobiogeography of Lotosaurus adentus (Archosauria: Poposauroidea) from the Middle-Upper Triassic Badong Formation, Hunan, China". PALAIOS. 33 (3): 106–124. Bibcode: 2018Palai..33..106H. doi: 10.2110/palo.2017.084. S2CID  133685832.
  23. ^ Lúcio Roberto-Da-Silva; Rodrigo Temp Müller; Marco Aurélio Gallo de França; Sérgio Furtado Cabreira; Sérgio Dias-Da-Silva (2018). "An impressive skeleton of the giant top predator Prestosuchus chiniquensis (Pseudosuchia: Loricata) from the Triassic of Southern Brazil, with phylogenetic remarks". Historical Biology: An International Journal of Paleobiology. 32 (7): 976–995. doi: 10.1080/08912963.2018.1559841. S2CID  92517047.
  24. ^ Candice M. Stefanic; Sterling J. Nesbitt (2018). "The axial skeleton of Poposaurus langstoni (Pseudosuchia: Poposauroidea) and its implications for accessory intervertebral articulation evolution in pseudosuchian archosaurs". PeerJ. 6: e4235. doi: 10.7717/peerj.4235. PMC  5816584. PMID  29472991.
  25. ^ Kathleen N. Dollman; James M. Clark; Mark A. Norell; Xu Xing; Jonah N. Choiniere (2018). "Convergent evolution of a eusuchian-type secondary palate within Shartegosuchidae". American Museum Novitates (3901): 1–23. doi: 10.1206/3901.1. hdl: 2246/6896. S2CID  90152090.
  26. ^ Yanina Herrera; Juan Martín Leardi; Marta S. Fernández (2018). "Braincase and endocranial anatomy of two thalattosuchian crocodylomorphs and their relevance in understanding their adaptations to the marine environment". PeerJ. 6: e5686. doi: 10.7717/peerj.5686. PMC  6263203. PMID  30515353.
  27. ^ Katja Waskow; Detlef Grzegorczyk; P. Martin Sander (2018). "The first record of Tyrannoneustes (Thalattosuchia: Metriorhynchidae): a complete skull from the Callovian (late Middle Jurassic) of Germany". PalZ. 92 (3): 457–480. doi: 10.1007/s12542-017-0395-z. S2CID  134063920.
  28. ^ Gabriel Lio; Federico L. Agnolin; Agustín G. Martinelli; Martín D. Ezcurra; Fernando E. Novas (2018). "New specimen of the enigmatic, Late Cretaceous crocodyliform Neuquensuchus universitas sheds light on the anatomy of the species". Cretaceous Research. 83: 62–74. Bibcode: 2018CrRes..83...62L. doi: 10.1016/j.cretres.2017.09.014. hdl: 11336/94889.
  29. ^ Francisco Barrios; Paula Bona; Ariana Paulina Carabajal; Zulma Gasparini (2018). "Re-description of the cranio-mandibular anatomy of Notosuchus terrestris (Crocodyliformes, Mesoeucrocodylia) from the Upper Cretaceous of Patagonia". Cretaceous Research. 83: 3–39. Bibcode: 2018CrRes..83....3B. doi: 10.1016/j.cretres.2017.08.016. hdl: 11336/32766.
  30. ^ Fabiano Vidoi Iori; Thiago da Silva Marinho; Ismar de Souza Carvalho; Luiz Augusto dos Santos Frare (2018). "Cranial morphology of Morrinhosuchus luziae (Crocodyliformes, Notosuchia) from the Upper Cretaceous of the Bauru Basin, Brazil". Cretaceous Research. 86: 41–52. Bibcode: 2018CrRes..86...41I. doi: 10.1016/j.cretres.2018.02.010. S2CID  133808234.
  31. ^ Fabiano Vidoi Iori; Ismar de Souza Carvalho (2018). "The Cretaceous crocodyliform Caipirasuchus: Behavioral feeding mechanisms". Cretaceous Research. 84: 181–187. Bibcode: 2018CrRes..84..181I. doi: 10.1016/j.cretres.2017.11.023. hdl: 11422/3392.
  32. ^ Kamila L. N. Bandeira; Arthur S. Brum; Rodrigo V. Pêgas; Giovanne M. Cidade; Borja Holgado; André Cidade; Rafael Gomes de Souza (2018). "The Baurusuchidae vs Theropoda record in the Bauru Group (Upper Cretaceous, Brazil): a taphonomic perspective". Journal of Iberian Geology. 44 (1): 25–54. doi: 10.1007/s41513-018-0048-4. S2CID  134403914.
  33. ^ Pedro L. Godoy; Gabriel S. Ferreira; Felipe C. Montefeltro; Bruno C. Vila Nova; Richard J. Butler; Max C. Langer (2018). "Evidence for heterochrony in the cranial evolution of fossil crocodyliforms" (PDF). Palaeontology. 61 (4): 543–558. Bibcode: 2018Palgy..61..543G. doi: 10.1111/pala.12354. S2CID  135248030.
  34. ^ Juan Martín Leardi; Diego Pol; Zulma Gasparini (2018). "New Patagonian baurusuchids (Crocodylomorpha; Notosuchia) from the Bajo de la Carpa Formation (Upper Cretaceous; Neuquén, Argentina): New evidences of the early sebecosuchian diversification in Gondwana". Comptes Rendus Palevol. 17 (8): 504–521. Bibcode: 2018CRPal..17..504L. doi: 10.1016/j.crpv.2018.02.002. hdl: 11336/98526.
  35. ^ Mariana V.A.Sena; Rafael C.L.P. Andrade; Juliana M. Sayão; Gustavo R. Oliveira (2018). "Bone microanatomy of Pepesuchus deiseae (Mesoeucrocodylia, Peirosauridae) reveals a mature individual from the Upper Cretaceous of Brazil". Cretaceous Research. 90: 335–348. Bibcode: 2018CrRes..90..335S. doi: 10.1016/j.cretres.2018.06.008. S2CID  133892913.
  36. ^ D.I. Pashchenko; I.T. Kuzmin; A.G. Sennikov; P.P. Skutschas; M.B. Efimov (2018). "On the finding of neosuchians (Neosuchia, Crocodyliformes) in the Middle Jurassic (Bathonian) deposits of the Moscow Region". Paleontological Journal. 52 (5): 550–562. doi: 10.1134/S0031030118050118. S2CID  91494193.
  37. ^ Jihed Dridi (2018). "New fossils of the giant pholidosaurid genus Sarcosuchus from the Early Cretaceous of Tunisia". Journal of African Earth Sciences. 147: 268–280. Bibcode: 2018JAfES.147..268D. doi: 10.1016/j.jafrearsci.2018.06.023. S2CID  134954361.
  38. ^ Louise M. V. Meunier; Hans C. E. Larsson (2018). "Trematochampsa taqueti as a nomen dubium and the crocodyliform diversity of the Upper Cretaceous In Beceten Formation of Niger". Zoological Journal of the Linnean Society. 182 (3): 659–680. doi: 10.1093/zoolinnean/zlx061.
  39. ^ A. de Celis; I. Narváez; F. Ortega (2018). "Pelvic and femoral anatomy of the Allodaposuchidae (Crocodyliformes, Eusuchia) from the Late Cretaceous of Lo Hueco (Cuenca, Spain)". Journal of Iberian Geology. 44 (1): 85–98. doi: 10.1007/s41513-017-0044-0. S2CID  133664418.
  40. ^ Tai Kubo; Masateru Shibata; Wilailuck Naksri; Pratueng Jintasakul; Yoichi Azuma (2018). "The earliest record of Asian Eusuchia from the Lower Cretaceous Khok Kruat Formation of northeastern Thailand". Cretaceous Research. 82: 21–28. Bibcode: 2018CrRes..82...21K. doi: 10.1016/j.cretres.2017.05.021.
  41. ^ Karla J. Leite; Daniel C. Fortier (2018). "The palate and choanae structure of the Susisuchus anatoceps (Crocodyliformes, Eusuchia): phylogenetic implications". PeerJ. 6: e5372. doi: 10.7717/peerj.5372. PMC  6089207. PMID  30128185.
  42. ^ Caitlin E. Syme; Steven W. Salisbury (2018). "Taphonomy of Isisfordia duncani specimens from the Lower Cretaceous (upper Albian) portion of the Winton Formation, Isisford, central-west Queensland". Royal Society Open Science. 5 (3): 171651. Bibcode: 2018RSOS....571651S. doi: 10.1098/rsos.171651. PMC  5882695. PMID  29657771.
  43. ^ Michael S. Y. Lee; Adam M. Yates (2018). "Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record". Proceedings of the Royal Society B: Biological Sciences. 285 (1881): 20181071. doi: 10.1098/rspb.2018.1071. PMC  6030529. PMID  30051855.
  44. ^ Masaya Iijima; Tai Kubo; Yoshitsugu Kobayashi (2018). "Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids". Royal Society Open Science. 5 (3): 171774. Bibcode: 2018RSOS....571774I. doi: 10.1098/rsos.171774. PMC  5882705. PMID  29657781.
  45. ^ Adam P. Cossette; Christopher A. Brochu (2018). "A new specimen of the alligatoroid Bottosaurus harlani and the early history of character evolution in alligatorids". Journal of Vertebrate Paleontology. 38 (4): (1)–(22). doi: 10.1080/02724634.2018.1486321. S2CID  92801257.
  46. ^ Xiao-Chun Wu; Chun Li; Yan-Yin Wang (2018). "Taxonomic reassessment and phylogenetic test of Asiatosuchus nanlingensis Young, 1964 and Eoalligator chunyii Young, 1964". Vertebrata PalAsiatica. 56 (2): 137–146. doi: 10.19615/j.cnki.1000-3118.170803.
  47. ^ Giovanne M. Cidade; Andrés Solórzano; Ascánio Daniel Rincón; Douglas Riff; Annie Schmaltz Hsiou (2018). "Redescription of the holotype of the Miocene crocodylian Mourasuchus arendsi (Alligatoroidea, Caimaninae) and perspectives on the taxonomy of the species". Historical Biology: An International Journal of Paleobiology. 32 (6): 733–749. doi: 10.1080/08912963.2018.1528246. S2CID  91716043.
  48. ^ Christian Foth; María Victoria Fernandez Blanco; Paula Bona; Torsten M. Scheyer (2018). "Cranial shape variation in jacarean caimanines (Crocodylia, Alligatoroidea) and its implications in the taxonomic status of extinct species: The case of Melanosuchus fisheri" (PDF). Journal of Morphology. 279 (2): 259–273. doi: 10.1002/jmor.20769. PMID  29139133. S2CID  31120204.
  49. ^ Rafael César Lima Pedroso de Andrade; Mariana Valéria Araújo Sena; Esaú Victor Araújo; Renan Alfredo Machado Bantim; Douglas Riff; Juliana Manso Sayão (2018). "Osteohistological study on both fossil and living Caimaninae (Crocodyliformes, Crocodylia) from South America and preliminary comments on growth physiology and ecology". Historical Biology: An International Journal of Paleobiology. 32 (3): 346–355. doi: 10.1080/08912963.2018.1493475. S2CID  91479319.
  50. ^ Anderson Aires Eduardo; Pablo Ariel Martinez; Sidney Feitosa Gouveia; Franciely da Silva Santos; Wilcilene Santos de Aragão; Jennifer Morales-Barbero; Leonardo Kerber; Alexandre Liparini (2018). "Extending the paleontology–biogeography reciprocity with SDMs: Exploring models and data in reducing fossil taxonomic uncertainty". PLOS ONE. 13 (3): e0194725. Bibcode: 2018PLoSO..1394725E. doi: 10.1371/journal.pone.0194725. PMC  5874039. PMID  29590174.
  51. ^ Andrés Solórzano; Mónica Núñez-Flores; Ascanio D. Rincón (2018). "Gryposuchus (Crocodylia, Gavialoidea) from the early Miocene of Venezuela". PalZ. 92 (1): 121–129. doi: 10.1007/s12542-017-0383-3. S2CID  134454036.
  52. ^ Rafael Gomes de Souza; Douglas Riff; Jonas P. de Souza-Filho; Alexander W. A. Kellner (2018). "Revisiting Gryposuchus jessei Gürich, 1912 (Crocodylia: Gavialoidea): specimen description and comments on the genus". Zootaxa. 4457 (1): 167–178. doi: 10.11646/zootaxa.4457.1.9. PMID  30314186. S2CID  52976475.
  53. ^ Robert E. Weems (2018). "Crocodilians of the Calvert Cliffs". Smithsonian Contributions to Paleobiology. 100 (100): 213–240. doi: 10.5479/si.1943-6688.100.
  54. ^ Ai Ito; Riosuke Aoki; Ren Hirayama; Masataka Yoshida; Hiroo Kon; Hideki Endo (2018). "The rediscovery and taxonomical reexamination of the longirostrine crocodylian from the Pleistocene of Taiwan". Paleontological Research. 22 (2): 150–155. doi: 10.2517/2017PR016. S2CID  134961600.
  55. ^ Torsten M. Scheyer; Massimo Delfino; Nicole Klein; Nancy Bunbury; Frauke Fleischer-Dogley; Dennis M. Hansen (2018). "Trophic interactions between larger crocodylians and giant tortoises on Aldabra Atoll, Western Indian Ocean, during the Late Pleistocene". Royal Society Open Science. 5 (1): 171800. doi: 10.1098/rsos.171800. PMC  5792950. PMID  29410873.
  56. ^ Gary S. Morgan; Nancy A. Albury; Renato Rímoli; Phillip Lehman; Alfred L. Rosenberger; Siobhán B. Cooke (2018). "The Cuban crocodile (Crocodylus rhombifer) from Late Quaternary underwater cave deposits in the Dominican Republic". American Museum Novitates (3916): 1–56. doi: 10.1206/3916.1. hdl: 2246/6920. S2CID  92375498.
  57. ^ Roberto-Da-Silva, Lúcio; Müller, Rodrigo Temp; França, Marco Aurélio Gallo de; Cabreira, Sérgio Furtado; Dias-Da-Silva, Sérgio (2018-12-24). "An impressive skeleton of the giant top predator Prestosuchus chiniquensis (Pseudosuchia: Loricata) from the Triassic of Southern Brazil, with phylogenetic remarks". Historical Biology. 32 (7): 976–995. doi: 10.1080/08912963.2018.1559841. ISSN  0891-2963. S2CID  92517047.
  58. ^ a b Rodolfo Salas-Gismondi; Jorge W. Moreno-Bernal; Torsten M. Scheyer; Marcelo R. Sánchez-Villagra; Carlos Jaramillo (2018). "New Miocene Caribbean gavialoids and patterns of longirostry in crocodylians". Journal of Systematic Palaeontology. 17 (12): 1049–1075. doi: 10.1080/14772019.2018.1495275. S2CID  91495532.
  59. ^ Jorgo Ristevski; Mark T. Young; Marco Brandalise de Andrade; Alexander K. Hastings (2018). "A new species of Anteophthalmosuchus (Crocodylomorpha, Goniopholididae) from the Lower Cretaceous of the Isle of Wight, United Kingdom, and a review of the genus". Cretaceous Research. 84: 340–383. Bibcode: 2018CrRes..84..340R. doi: 10.1016/j.cretres.2017.11.008.
  60. ^ Rodolfo A. Coria; Francisco Ortega; Andrea B. Arcucci; Philip J. Currie (2019). "A new and complete peirosaurid (Crocodyliformes, Notosuchia) from Sierra Barrosa (Santonian, Upper Cretaceous) of the Neuquén Basin, Argentina". Cretaceous Research. 95: 89–105. Bibcode: 2019CrRes..95...89C. doi: 10.1016/j.cretres.2018.11.008. S2CID  133671689.
  61. ^ Agustín G. Martinelli; Thiago S. Marinho; Fabiano V. Iori; Luiz Carlos B. Ribeiro (2018). "The first Caipirasuchus (Mesoeucrocodylia, Notosuchia) from the Late Cretaceous of Minas Gerais, Brazil: new insights on sphagesaurid anatomy and taxonomy". PeerJ. 6: e5594. doi: 10.7717/peerj.5594. PMC  6129144. PMID  30202663.
  62. ^ Chun Li; Xiao-chun Wu; Scott Rufolo (2019). "A new crocodyloid (Eusuchia: Crocodylia) from the Upper Cretaceous of China". Cretaceous Research. 94: 25–39. Bibcode: 2019CrRes..94...25L. doi: 10.1016/j.cretres.2018.09.015. S2CID  133661294.
  63. ^ L.S. Filippi; F. Barrios; A.C. Garrido (2018). "A new peirosaurid from the Bajo de la Carpa Formation (Upper Cretaceous, Santonian) of Cerro Overo, Neuquén, Argentina". Cretaceous Research. 83: 75–83. Bibcode: 2018CrRes..83...75F. doi: 10.1016/j.cretres.2017.10.021. hdl: 11336/97117.
  64. ^ Attila Ősi; Mark T. Young; András Galácz; Márton Rabi (2018). "A new large-bodied thalattosuchian crocodyliform from the Lower Jurassic (Toarcian) of Hungary, with further evidence of the mosaic acquisition of marine adaptations in Metriorhynchoidea". PeerJ. 6: e4668. doi: 10.7717/peerj.4668. PMC  5949208. PMID  29761038.
  65. ^ Jair I. Barrientos-Lara; Jesús Alvarado-Ortega; Marta S. Fernández (2018). "The marine crocodile Maledictosuchus (Thalattosuchia, Metriorhynchidae) from the Kimmeridgian deposits of Tlaxiaco, Oaxaca, southern Mexico". Journal of Vertebrate Paleontology. 38 (4): (1)–(14). doi: 10.1080/02724634.2018.1478419. S2CID  92260550.
  66. ^ Richard J. Butler; Sterling J. Nesbitt; Alan J. Charig; David J. Gower; Paul M. Barrett (2018). "Mandasuchus tanyauchen, gen. et sp. nov., a pseudosuchian archosaur from the Manda Beds (?Middle Triassic) of Tanzania". Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 96–121. doi: 10.1080/02724634.2017.1343728. S2CID  90164051.
  67. ^ Marcel B. Lacerda; Marco A. G. de França; Cesar L. Schultz (2018). "A new erpetosuchid (Pseudosuchia, Archosauria) from the Middle–Late Triassic of Southern Brazil". Zoological Journal of the Linnean Society. 184 (3): 804–824. doi: 10.1093/zoolinnean/zly008.
  68. ^ Octávio Mateus; Eduardo Puértolas-Pascual; Pedro M. Callapez (2018). "A new eusuchian crocodylomorph from the Cenomanian (Late Cretaceous) of Portugal reveals novel implications on the origin of Crocodylia". Zoological Journal of the Linnean Society. 186 (2): 501–528. doi: 10.1093/zoolinnean/zly064.
  69. ^ Paula Bona; Martín D. Ezcurra; Francisco Barrios; María V. Fernandez Blanco (2018). "A new Palaeocene crocodylian from southern Argentina sheds light on the early history of caimanines". Proceedings of the Royal Society B: Biological Sciences. 285 (1885): 20180843. doi: 10.1098/rspb.2018.0843. PMC  6125902. PMID  30135152.
  70. ^ André E. Piacentini Pinheiro; Paulo Victor Luiz Gomes da Costa Pereira; Rafael G. de Souza; Arthur S. Brum; Ricardo T. Lopes; Alessandra S. Machado; Lílian P. Bergqvist; Felipe M. Simbras (2018). "Reassessment of the enigmatic crocodyliform "Goniopholis" paulistanus Roxo, 1936: Historical approach, systematic, and description by new materials". PLOS ONE. 13 (8): e0199984. Bibcode: 2018PLoSO..1399984P. doi: 10.1371/journal.pone.0199984. PMC  6070184. PMID  30067779.
  71. ^ Foster, J. (2018). "A new atoposaurid crocodylomorph from the Morrison Formation (Upper Jurassic) of Wyoming, USA". Geology of the Intermountain West. 5: 287–295. doi: 10.31711/giw.v5i0.32. ISSN  2380-7601.
  72. ^ Sara Saber; Joseph J.W. Sertich; Hesham M. Sallam; Khaled A. Ouda; Patrick M. O'Connor; Erik R. Seiffert (2018). "An enigmatic crocodyliform from the Upper Cretaceous Quseir Formation, central Egypt". Cretaceous Research. 90: 174–184. Bibcode: 2018CrRes..90..174S. doi: 10.1016/j.cretres.2018.04.004. S2CID  134070704.
  73. ^ Héctor E. Rivera-Sylva; Eberhard Frey; Wolfgang Stinnesbeck; Gerardo Carbot-Chanona; Iván E. Sanchez-Uribe; José Rubén Guzmán-Gutiérrez (2018). "Paleodiversity of Late Cretaceous Ankylosauria from Mexico and their phylogenetic significance". Swiss Journal of Palaeontology. 137 (1): 83–93. doi: 10.1007/s13358-018-0153-1. S2CID  134924657.
  74. ^ Tzu-Ruei Yang; Ying-Hsuan Chen; Jasmina Wiemann; Beate Spiering; P. Martin Sander (2018). "Fossil eggshell cuticle elucidates dinosaur nesting ecology". PeerJ. 6: e5144. doi: 10.7717/peerj.5144. PMC  6037156. PMID  30002976.
  75. ^ Ya-Lei Yin; Rui Pei; Chang-Fu Zhou (2018). "Cranial morphology of Sinovenator changii (Theropoda: Troodontidae) on the new material from the Yixian Formation of western Liaoning, China". PeerJ. 6: e4977. doi: 10.7717/peerj.4977. PMC  6015489. PMID  29942679.
  76. ^ Daniel Smith-Paredes; Daniel Núñez-León; Sergio Soto-Acuña; Jingmai O’Connor; João Francisco Botelho; Alexander O. Vargas (2018). "Dinosaur ossification centres in embryonic birds uncover developmental evolution of the skull". Nature Ecology & Evolution. 2 (12): 1966–1973. doi: 10.1038/s41559-018-0713-1. PMID  30455438. S2CID  53720280.
  77. ^ D. C. Deeming; G. Mayr (2018). "Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs" (PDF). Journal of Evolutionary Biology. 31 (5): 701–709. doi: 10.1111/jeb.13256. PMID  29485191. S2CID  3588317.
  78. ^ Lida Xing; Ryan C. McKellar; Xing Xu; Gang Li; Ming Bai; W. Scott Persons IV; Tetsuto Miyashita; Michael J. Benton; Jianping Zhang; Alexander P. Wolfe; Qiru Yi; Kuowei Tseng; Hao Ran; Philip J. Currie (2016). "A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber". Current Biology. 26 (24): 3352–3360. doi: 10.1016/j.cub.2016.10.008. hdl: 1983/d3a169c7-b776-4be5-96af-6053c23fa52b. PMID  27939315. S2CID  31580099.
  79. ^ Dana J. Rashid; Kevin Surya; Luis M. Chiappe; Nathan Carroll; Kimball L. Garrett; Bino Varghese; Alida Bailleul; Jingmai K. O’Connor; Susan C. Chapman; John R. Horner (2018). "Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens". Scientific Reports. 8 (1): Article number 9014. Bibcode: 2018NatSR...8.9014R. doi: 10.1038/s41598-018-27336-x. PMC  5997987. PMID  29899503.
  80. ^ Maria Eugenia Leone Gold; Akinobu Watanabe (2018). "Flightless birds are not neuroanatomical analogs of non-avian dinosaurs". BMC Evolutionary Biology. 18 (1): 190. doi: 10.1186/s12862-018-1312-0. PMC  6293530. PMID  30545287.
  81. ^ Mary Higby Schweitzer; Wenxia Zheng; Alison E. Moyer; Peter Sjövall; Johan Lindgren (2018). "Preservation potential of keratin in deep time". PLOS ONE. 13 (11): e0206569. Bibcode: 2018PLoSO..1306569S. doi: 10.1371/journal.pone.0206569. PMC  6261410. PMID  30485294.
  82. ^ Evan T. Saitta; Jakob Vinther (2019). "A perspective on the evidence for keratin protein preservation in fossils: An issue of replication versus validation". Palaeontologia Electronica. 22 (3): Article number 22.3.2E. doi: 10.26879/1017E. S2CID  213903998.
  83. ^ Lida Xing; Pierre Cockx; Ryan C. McKellar; Jingmai O’Connor (2018). "Ornamental feathers in Cretaceous Burmese amber: resolving the enigma of rachis-dominated feather structure". Journal of Palaeogeography. 7 (1): Article number 13. Bibcode: 2018JPalG...7...13X. doi: 10.1186/s42501-018-0014-2. S2CID  91693606.
  84. ^ Lida Xing; Ryan C. McKellar; Zhizhong Gao (2018). "Cretaceous hitchhikers: a possible phoretic association between a pseudoscorpion and bird in Burmese amber". Acta Geologica Sinica (English Edition). 92 (6): 2434–2435. doi: 10.1111/1755-6724.13739. S2CID  219884097.
  85. ^ Li-Da Xing; Yuan-Chao Hu; Jian-Dong Huang; Qing He; Martin G. Lockley; Michael E. Burns; Jun Fang (2018). "A redescription of the ichnospecies Koreanaornis anhuiensis (Aves) from the Lower Cretaceous Qiuzhuang Formation at Mingguang city, Anhui Province, China". Journal of Palaeogeography. 7 (1): 58–65. Bibcode: 2018JPalG...7...58X. doi: 10.1016/j.jop.2017.10.003.
  86. ^ Takuya Imai; Yuta Tsukiji; Yoichi Azuma (2018). "Description of bird tracks from the Kitadani Formation (Aptian), Katsuyama, Fukui, Japan with three-dimensional imaging techniques" (PDF). Memoir of the Fukui Prefectural Dinosaur Museum. 17: 1–8.
  87. ^ Lisa G. Buckley; Richard T. McCrea; Lida Xing (2018). "First report of Ignotornidae (Aves) from the Lower Cretaceous Gates Formation (Albian) of western Canada, with description of a new ichnospecies of Ignotornis, Ignotornis canadensis ichnosp. nov". Cretaceous Research. 84: 209–222. Bibcode: 2018CrRes..84..209B. doi: 10.1016/j.cretres.2017.11.021.
  88. ^ Lida Xing; Lisa G. Buckley; Martin G. Lockley; Richard T. McCrea; Yonggang Tang (2018). "Lower Cretaceous avian tracks from Jiangsu Province, China: A first Chinese report for ichnogenus Goseongornipes (Ignotornidae)". Cretaceous Research. 84: 571–577. Bibcode: 2018CrRes..84..571X. doi: 10.1016/j.cretres.2017.12.016.
  89. ^ Oliver W.M. Rauhut; Christian Foth; Helmut Tischlinger (2018). "The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria". PeerJ. 6: e4191. doi: 10.7717/peerj.4191. PMC  5788062. PMID  29383285.
  90. ^ Dennis F. A. E. Voeten; Jorge Cubo; Emmanuel de Margerie; Martin Röper; Vincent Beyrand; Stanislav Bureš; Paul Tafforeau; Sophie Sanchez (2018). "Wing bone geometry reveals active flight in Archaeopteryx". Nature Communications. 9 (1): Article number 923. Bibcode: 2018NatCo...9..923V. doi: 10.1038/s41467-018-03296-8. PMC  5849612. PMID  29535376.
  91. ^ Jingmai O'Connor; Xiaoli Wang; Corwin Sullivan; Yan Wang; Xiaoting Zheng; Han Hu; Xiaomei Zhang; Zhonghe Zhou (2018). "First report of gastroliths in the Early Cretaceous basal bird Jeholornis". Cretaceous Research. 84: 200–208. Bibcode: 2018CrRes..84..200O. doi: 10.1016/j.cretres.2017.10.031.
  92. ^ Guillermo Navalón; Qingjin Meng; Jesús Marugán-Lobón; Yuguang Zhang; Baopeng Wang; Hai Xing; Di Liu; Luis M. Chiappe (2018). "Diversity and evolution of the Confuciusornithidae: Evidence from a new 131-million-year-old specimen from the Huajiying Formation in NE China". Journal of Asian Earth Sciences. 152: 12–22. Bibcode: 2018JAESc.152...12N. doi: 10.1016/j.jseaes.2017.11.005. hdl: 10486/684666. S2CID  135238078.
  93. ^ Andrzej Elżanowski; D. Stefan Peters; Gerald Mayr (2018). "Cranial morphology of the Early Cretaceous bird Confuciusornis". Journal of Vertebrate Paleontology. 38 (2): e1439832. Bibcode: 2018JVPal..38E9832E. doi: 10.1080/02724634.2018.1439832. S2CID  90118265.
  94. ^ Quanguo Li; Julia A. Clarke; Ke-Qin Gao; Jennifer A. Peteya; Matthew D. Shawkey (2018). "Elaborate plumage patterning in a Cretaceous bird". PeerJ. 6: e5831. doi: 10.7717/peerj.5831. PMC  6216952. PMID  30405969.
  95. ^ Lida Xing; Jingmai K. O'Connor; Ryan C. McKellar; Luis M. Chiappe; Ming Bai; Kuowei Tseng; Jie Zhang; Haidong Yang; Jun Fang; Gang Li (2018). "A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation". Science Bulletin. 63 (4): 235–243. Bibcode: 2018SciBu..63..235X. doi: 10.1016/j.scib.2018.01.019. PMID  36659012.
  96. ^ Fabien Knoll; Luis M. Chiappe; Sophie Sanchez; Russell J. Garwood; Nicholas P. Edwards; Roy A. Wogelius; William I. Sellers; Phillip L. Manning; Francisco Ortega; Francisco J. Serrano; Jesús Marugán-Lobón; Elena Cuesta; Fernando Escaso; Jose Luis Sanz (2018). "A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds". Nature Communications. 9 (1): Article number 937. Bibcode: 2018NatCo...9..937K. doi: 10.1038/s41467-018-03295-9. PMC  5838198. PMID  29507288.
  97. ^ Francisco J. Serrano; Luis M. Chiappe; Paul Palmqvist; Borja Figueirido; Jesús Marugán-Lobón; José L. Sanz (2018). "Flight reconstruction of two European enantiornithines (Aves, Pygostylia) and the achievement of bounding flight in Early Cretaceous birds". Palaeontology. 61 (3): 359–368. Bibcode: 2018Palgy..61..359S. doi: 10.1111/pala.12351.
  98. ^ A. V. Panteleev (2018). "Morphology of the coracoid of Late Cretaceous enantiornithines (Aves: Enantiornithes) from Dzharakuduk (Uzbekistan)". Paleontological Journal. 52 (2): 201–207. doi: 10.1134/S0031030118020089. S2CID  91039471.
  99. ^ Jingmai O’Connor; Gregory M. Erickson; Mark Norell; Alida M. Bailleul; Han Hu; Zhonghe Zhou (2018). "Medullary bone in an Early Cretaceous enantiornithine bird and discussion regarding its identification in fossils". Nature Communications. 9 (1): Article number 5169. Bibcode: 2018NatCo...9.5169O. doi: 10.1038/s41467-018-07621-z. PMC  6281594. PMID  30518763.
  100. ^ Xiaoli Wang; Jingmai K. O’Connor; John N. Maina; Yanhong Pan; Min Wang; Yan Wang; Xiaoting Zheng; Zhonghe Zhou (2018). "Archaeorhynchus preserving significant soft tissue including probable fossilized lungs". Proceedings of the National Academy of Sciences of the United States of America. 115 (45): 11555–11560. Bibcode: 2018PNAS..11511555W. doi: 10.1073/pnas.1805803115. PMC  6233124. PMID  30348768.
  101. ^ Xia Wang; Jiandong Huang; Yuanchao Hu; Xiaoyu Liu; Jennifer Peteya; Julia A. Clarke (2018). "The earliest evidence for a supraorbital salt gland in dinosaurs in new Early Cretaceous ornithurines". Scientific Reports. 8 (1): Article number 3969. Bibcode: 2018NatSR...8.3969W. doi: 10.1038/s41598-018-22412-8. PMC  5838252. PMID  29507398.
  102. ^ Evgeny E. Perkovsky; Ekaterina B. Sukhomlin; Nikita V. Zelenkov (2018). "An unexpectedly abundant new genus of black flies (Diptera, Simuliidae) from Upper Cretaceous Taimyr amber of Ugolyak, with discussion of the early evolution of birds at high latitudes". Cretaceous Research. 90: 80–89. Bibcode: 2018CrRes..90...80P. doi: 10.1016/j.cretres.2018.04.002. S2CID  134500301.
  103. ^ Daniel J. Field; Michael Hanson; David Burnham; Laura E. Wilson; Kristopher Super; Dana Ehret; Jun A. Ebersole; Bhart-Anjan S. Bhullar (2018). "Complete Ichthyornis skull illuminates mosaic assembly of the avian head". Nature. 557 (7703): 96–100. Bibcode: 2018Natur.557...96F. doi: 10.1038/s41586-018-0053-y. PMID  29720636. S2CID  13678775.
  104. ^ Daniel J. Field; Antoine Bercovici; Jacob S. Berv; Regan Dunn; David E. Fastovsky; Tyler R. Lyson; Vivi Vajda; Jacques A. Gauthier (2018). "Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction". Current Biology. 28 (11): 1825–1831.e2. doi: 10.1016/j.cub.2018.04.062. PMID  29804807. S2CID  44075214.
  105. ^ Ryan N. Felice; Anjali Goswami (2018). "Developmental origins of mosaic evolution in the avian cranium". Proceedings of the National Academy of Sciences of the United States of America. 115 (3): 555–560. Bibcode: 2018PNAS..115..555F. doi: 10.1073/pnas.1716437115. PMC  5776993. PMID  29279399.
  106. ^ Marcos Cenizo; Jorge Noriega; Juan Diederle; Esteban Soibelzon; Leopoldo Soibelzon; Sergio Rodriguez; Elisa Beilinson (2018). "An unexpected large Crested Tinamou (Eudromia, Tinamidae, Aves) near to Last Glacial Maximum (MIS 2, late Pleistocene) of the Argentine Pampas". Historical Biology: An International Journal of Paleobiology. 32 (3): 330–338. doi: 10.1080/08912963.2018.1491568. hdl: 11336/84901. S2CID  91851921.
  107. ^ Alexander P. Boast; Laura S. Weyrich; Jamie R. Wood; Jessica L. Metcalf; Rob Knight; Alan Cooper (2018). "Coprolites reveal ecological interactions lost with the extinction of New Zealand birds". Proceedings of the National Academy of Sciences of the United States of America. 115 (7): 1546–1551. Bibcode: 2018PNAS..115.1546B. doi: 10.1073/pnas.1712337115. PMC  5816151. PMID  29440415.
  108. ^ Joanna K. Carpenter; Jamie R. Wood; Janet M. Wilmshurst; Dave Kelly (2018). "An avian seed dispersal paradox: New Zealand's extinct megafaunal birds did not disperse large seeds". Proceedings of the Royal Society B: Biological Sciences. 285 (1877): 20180352. doi: 10.1098/rspb.2018.0352. PMC  5936733. PMID  29669903.
  109. ^ Vicki A. Thomson; Kieren J. Mitchell; Rolan Eberhard; Joe Dortch; Jeremy J. Austin; Alan Cooper (2018). "Genetic diversity and drivers of dwarfism in extinct island emu populations". Biology Letters. 14 (4): 20170617. doi: 10.1098/rsbl.2017.0617. PMC  5938559. PMID  29618519.
  110. ^ James Hansford; Patricia C. Wright; Armand Rasoamiaramanana; Ventura R. Pérez; Laurie R. Godfrey; David Errickson; Tim Thompson; Samuel T. Turvey (2018). "Early Holocene human presence in Madagascar evidenced by exploitation of avian megafauna". Science Advances. 4 (9): eaat6925. Bibcode: 2018SciA....4.6925H. doi: 10.1126/sciadv.aat6925. PMC  6135541. PMID  30214938.
  111. ^ Christopher R. Torres; Julia A. Clarke (2018). "Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions". Proceedings of the Royal Society B: Biological Sciences. 285 (1890): 20181540. doi: 10.1098/rspb.2018.1540. PMC  6235046. PMID  30381378.
  112. ^ Antoine Louchart; Vivian de Buffrénil; Estelle Bourdon; Maïtena Dumont; Laurent Viriot; Jean-Yves Sire (2018). "Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions". Scientific Reports. 8 (1): Article number 12952. Bibcode: 2018NatSR...812952L. doi: 10.1038/s41598-018-31022-3. PMC  6113277. PMID  30154516.
  113. ^ Federico L. Agnolín; Federico Brissón Egli; Sankar Chatterjee; Jordi Alexis Garcia Marsà; Fernando E. Novas (2017). "Vegaviidae, a new clade of southern diving birds that survived the K/T boundary". The Science of Nature. 104 (11–12): Article number 87. Bibcode: 2017SciNa.104...87A. doi: 10.1007/s00114-017-1508-y. PMID  28988276. S2CID  13246547.
  114. ^ Gerald Mayr; Vanesa L. De Pietri; R. Paul Scofield; Trevor H. Worthy (2018). "On the taxonomic composition and phylogenetic affinities of the recently proposed clade Vegaviidae Agnolín et al., 2017 ‒ neornithine birds from the Upper Cretaceous of the Southern Hemisphere". Cretaceous Research. 86: 178–185. doi: 10.1016/j.cretres.2018.02.013. hdl: 2328/37887. S2CID  134876425.
  115. ^ N. V. Zelenkov; T. A. Stidham (2018). "Possible filter-feeding in the extinct Presbyornis and the evolution of Anseriformes (Aves)". Zoologicheskii Zhurnal. 97 (8): 943–956. doi: 10.1134/s0044513418080159.
  116. ^ Janet C. Buckner; Ryan Ellingson; David A. Gold; Terry L. Jones; David K. Jacobs (2018). "Mitogenomics supports an unexpected taxonomic relationship for the extinct diving duck Chendytes lawi and definitively places the extinct Labrador Duck" (PDF). Molecular Phylogenetics and Evolution. 122: 102–109. doi: 10.1016/j.ympev.2017.12.008. PMID  29247849.
  117. ^ L. Schmidt (2018). "A biological origin for gravel mounds in inland Australia". Australian Journal of Earth Sciences. 65 (5): 607–617. Bibcode: 2018AuJES..65..607S. doi: 10.1080/08120099.2018.1460865. S2CID  133805084.
  118. ^ Daniel J. Field; Allison Y. Hsiang (2018). "A North American stem turaco, and the complex biogeographic history of modern birds". BMC Evolutionary Biology. 18 (1): 102. doi: 10.1186/s12862-018-1212-3. PMC  6016133. PMID  29936914.
  119. ^ Ursula B. Göhlich; Gerald Mayr (2018). "The alleged early Miocene Auk Petralca austriaca is a Loon (Aves, Gaviiformes): restudy of a controversial fossil bird". Historical Biology: An International Journal of Paleobiology. 30 (8): 1076–1083. doi: 10.1080/08912963.2017.1333610. S2CID  90729728.
  120. ^ Jordi Alexis Garcia Marsà; Claudia P. Tambussi; Ignacio A. Cerda (2018). "First evidence of globuli ossei in bird (Aves, Spheniciformes). Implications on paleohistology and bird behaviour". Historical Biology: An International Journal of Paleobiology. 32 (4): 570–573. doi: 10.1080/08912963.2018.1508288. S2CID  91883191.
  121. ^ Federico J. Degrange; Daniel T. Ksepka; Claudia P. Tambussi (2018). "Redescription of the oldest crown clade penguin: cranial osteology, jaw myology, neuroanatomy, and phylogenetic affinities of Madrynornis mirandus". Journal of Vertebrate Paleontology. 38 (2): e1445636. Bibcode: 2018JVPal..38E5636D. doi: 10.1080/02724634.2018.1445636. hdl: 11336/183611. S2CID  90452580.
  122. ^ Theresa L. Cole; Jonathan M. Waters; Lara D. Shepherd; Nicolas J. Rawlence; Leo Joseph; Jamie R. Wood (2018). "Ancient DNA reveals that the 'extinct' Hunter Island penguin (Tasidyptes hunteri) is not a distinct taxon". Zoological Journal of the Linnean Society. 182 (2): 459–464. doi: 10.1093/zoolinnean/zlx043.
  123. ^ Yuesong Gao; Lianjiao Yang; Jianjun Wang; Zhouqing Xie; Yuhong Wang; Liguang Sun (2018). "Penguin colonization following the last glacial-interglacial transition in the Vestfold Hills, East Antarctica". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 629–639. Bibcode: 2018PPP...490..629G. doi: 10.1016/j.palaeo.2017.11.053.
  124. ^ Steven D. Emslie; Ashley McKenzie; William P. Patterson (2018). "The rise and fall of an ancient Adélie penguin 'supercolony' at Cape Adare, Antarctica". Royal Society Open Science. 5 (4): 172032. Bibcode: 2018RSOS....572032E. doi: 10.1098/rsos.172032. PMC  5936921. PMID  29765656.
  125. ^ Yuesong Gao; Lianjiao Yang; Zhouqing Xie; Louise Emmerson; Colin Southwell; Yuhong Wang; Liguang Sun (2018). "Last millennium Adélie penguin mortality and colony abandonment events on Long Peninsula, East Antarctica". Journal of Geophysical Research: Biogeosciences. 123 (9): 2878–2889. Bibcode: 2018JGRG..123.2878G. doi: 10.1029/2018JG004550. S2CID  135026839.
  126. ^ Gerald Mayr; James L. Goedert (2018). "First record of a tarsometatarsus of Tonsala hildegardae (Plotopteridae) and other avian remains from the late Eocene/early Oligocene of Washington State (USA)". Geobios. 51 (1): 51–59. Bibcode: 2018Geobi..51...51M. doi: 10.1016/j.geobios.2017.12.006.
  127. ^ Tatsuro Ando; Keisaku Fukata (2018). "A well-preserved partial scapula from Japan and the reconstruction of the triosseal canal of plotopterids". PeerJ. 6: e5391. doi: 10.7717/peerj.5391. PMC  6112113. PMID  30155348.
  128. ^ Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Pleistocene fossils from Japan show that the recently extinct Spectacled Cormorant (Phalacrocorax perspicillatus) was a relict". The Auk. 135 (4): 895–907. doi: 10.1642/AUK-18-54.1. hdl: 2433/233910. S2CID  91465582.
  129. ^ Jörn Theuerkauf; Roman Gula (2018). "Indirect evidence for body size reduction in a flightless island bird after human colonisation". Journal of Ornithology. 159 (3): 823–826. doi: 10.1007/s10336-018-1545-0. S2CID  3521115.
  130. ^ Antoine Louchart; Fabiola Bastian; Marilia Baptista; Perle Guarino-Vignon; Julian P. Hume; Cécile Jacot-des-Combes; Cécile Mourer-Chauviré; Catherine Hänni; Morgane Ollivier (2018). "Ancient DNA reveals the origins, colonization histories, and evolutionary pathways of two recently extinct species of giant scops owl from Mauritius and Rodrigues Islands (Mascarene Islands, south-western Indian Ocean)". Journal of Biogeography. 45 (12): 2678–2689. doi: 10.1111/jbi.13450. S2CID  91541852.
  131. ^ Ashley Kruger; Shaw Badenhorst (2018). "Remains of a barn owl (Tyto alba) from the Dinaledi Chamber, Rising Star Cave, South Africa". South African Journal of Science. 114 (11/12): Article number 5152. doi: 10.17159/sajs.2018/5152.
  132. ^ Gerald Mayr (2018). "New data on the anatomy and palaeobiology of sandcoleid mousebirds (Aves, Coliiformes) from the early Eocene of Messel". Palaeobiodiversity and Palaeoenvironments. 98 (4): 639–651. doi: 10.1007/s12549-018-0328-1. S2CID  134450324.
  133. ^ Gerald Mayr; Stig A. Walsh (2018). "Exceptionally well-preserved early Eocene fossil reveals cranial and vertebral features of a stem group roller (Aves: Coraciiformes)". PalZ. 92 (4): 715–726. doi: 10.1007/s12542-018-0424-6. S2CID  92362059.
  134. ^ Washington Jones; Andrés Rinderknecht; Herculano Alvarenga; Felipe Montenegro; Martín Ubilla (2018). "The last terror birds (Aves, Phorusrhacidae): new evidence from the late Pleistocene of Uruguay". PalZ. 92 (2): 365–372. doi: 10.1007/s12542-017-0388-y. S2CID  134344096.
  135. ^ Ulf S. Johansson; Per G. P. Ericson; Mozes P. K. Blom; Martin Irestedt (2018). "The phylogenetic position of the extinct Cuban Macaw Ara tricolor based on complete mitochondrial genome sequences". Ibis. 160 (3): 666–672. doi: 10.1111/ibi.12591.
  136. ^ Richard J. George; Stephen Plog; Adam S. Watson; Kari L. Schmidt; Brendan J. Culleton; Thomas K. Harper; Patricia A. Gilman; Steven A. LeBlanc; George Amato; Peter Whiteley; Logan Kistler; Douglas J. Kennett (2018). "Archaeogenomic evidence from the southwestern US points to a Pre-Hispanic scarlet macaw breeding colony". Proceedings of the National Academy of Sciences of the United States of America. 115 (35): 8740–8745. Bibcode: 2018PNAS..115.8740G. doi: 10.1073/pnas.1805856115. PMC  6126748. PMID  30104352.
  137. ^ Kari A. Prassack; Michael C. Pante; Jackson K. Njau; Ignacio de la Torre (2018). "The paleoecology of Pleistocene birds from Middle Bed II, at Olduvai Gorge, Tanzania, and the environmental context of the Oldowan-Acheulean transition". Journal of Human Evolution. 120: 32–47. doi: 10.1016/j.jhevol.2017.11.003. hdl: 10261/357100. PMID  29458978. S2CID  3411642.
  138. ^ Lisa Carrera; Marco Pavia; Matteo Romandini; Marco Peresani (2018). "Avian fossil assemblages at the onset of the LGM in the eastern Alps: A palaecological contribution from the Rio Secco Cave (Italy)". Comptes Rendus Palevol. 17 (3): 166–177. Bibcode: 2018CRPal..17..166C. doi: 10.1016/j.crpv.2017.10.006. hdl: 11392/2396672.
  139. ^ Jessica A. Oswald; David W. Steadman (2018). "The late Quaternary bird community of New Providence, Bahamas". The Auk. 135 (2): 359–377. doi: 10.1642/AUK-17-185.1. S2CID  90808935.
  140. ^ Julian P. Hume; David Martill; Richard Hing (2018). "A terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group, Seychelles". PLOS ONE. 13 (3): e0192675. Bibcode: 2018PLoSO..1392675H. doi: 10.1371/journal.pone.0192675. PMC  5873930. PMID  29590117.
  141. ^ Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Pleistocene non-passeriform landbirds from Shiriya, northeast Japan". Acta Palaeontologica Polonica. 63 (3): 469–491. doi: 10.4202/app.00509.2018. hdl: 2433/234713.
  142. ^ Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Pleistocene seabirds from Shiriya, northeast Japan: systematics and oceanographic context". Historical Biology: An International Journal of Paleobiology. 32 (5): 671–729. doi: 10.1080/08912963.2018.1529764. S2CID  91318600.
  143. ^ Lisa Carrera; Marco Pavia; Marco Peresani; Matteo Romandini (2018). "Late Pleistocene fossil birds from Buso Doppio del Broion Cave (North-Eastern Italy): implications for palaeoecology, palaeoenvironment and palaeoclimate". Bollettino della Società Paleontologica Italiana. 57 (2): 145–174. doi: 10.4435/BSPI.2018.10.
  144. ^ Daniel R. Lawver; Clint A. Boyd (2018). "An avian eggshell from the Brule Formation (Oligocene) of North Dakota". Journal of Vertebrate Paleontology. 38 (4): (1)–(9). doi: 10.1080/02724634.2018.1486848. S2CID  92011080.
  145. ^ Cécile Mourer‑Chauviré; Marie‑Françoise Bonifay (2018). "The birds from the Early Pleistocene of Ceyssaguet (Lavoûte‑sur‑Loire, Haute‑Loire, France): description of a new species of the genus Aquila". Quaternaire. 29 (3): 183–194.
  146. ^ Alan J.D. Tennyson; Al A. Mannering (2018). "A new species of Pliocene shearwater (Aves: Procellariidae) from New Zealand" (PDF). Tuhinga: Records of the Museum of New Zealand. 29: 1–19.
  147. ^ Nikita V. Zelenkov; Thomas A. Stidham; Nicolay V. Martynovich; Natalia V. Volkova; Qiang Li; Zhuding Qiu (2018). "The middle Miocene duck Chenoanas (Aves, Anatidae): new species, phylogeny and geographical range". Papers in Palaeontology. 4 (3): 309–326. doi: 10.1002/spp2.1107. S2CID  134072594.
  148. ^ Jacqueline M.T. Nguyen; Michael Archer; Suzanne J. Hand (2018). "Quail-thrush birds from the Miocene of northern Australia". Acta Palaeontologica Polonica. 63 (3): 493–502. doi: 10.4202/app.00485.2018.
  149. ^ Stanislas Rigal; Patrick V. Kirch; Trevor H. Worthy (2018). "New prehistoric avifaunas from the Gambier Group, French Polynesia". Palaeontologia Electronica. 21 (3): Article number 21.3.43. doi: 10.26879/892.
  150. ^ Xiaoting Zheng; Jingmai K. O'Connor; Xiaoli Wang; Yan Wang; Zhonghe Zhou (2018). "Reinterpretation of a previously described Jehol bird clarifies early trophic evolution in the Ornithuromorpha". Proceedings of the Royal Society B: Biological Sciences. 285 (1871): 20172494. doi: 10.1098/rspb.2017.2494. PMC  5805944. PMID  29386367.
  151. ^ a b Jessie Atterholt; J. Howard Hutchison; Jingmai K. O’Connor (2018). "The most complete enantiornithine from North America and a phylogenetic analysis of the Avisauridae". PeerJ. 6: e5910. doi: 10.7717/peerj.5910. PMC  6238772. PMID  30479894.
  152. ^ Min Wang; Thomas A. Stidham; Zhonghe Zhou (2018). "A new clade of basal Early Cretaceous pygostylian birds and developmental plasticity of the avian shoulder girdle". Proceedings of the National Academy of Sciences of the United States of America. 115 (42): 10708–10713. Bibcode: 2018PNAS..11510708W. doi: 10.1073/pnas.1812176115. PMC  6196491. PMID  30249638.
  153. ^ Natalia V. Volkova; Nikita V. Zelenkov (2018). "A scansorial passerine bird (Passeriformes, Certhioidea) from the uppermost Lower Miocene of Eastern Siberia". Paleontological Journal. 52 (1): 58–65. doi: 10.1134/S0031030118010148. S2CID  90889828.
  154. ^ a b Ellen K. Mather; Alan J. D. Tennyson; R. Paul Scofield; Vanesa L. De Pietri; Suzanne J. Hand; Michael Archer; Warren D. Handley; Trevor H. Worthy (2018). "Flightless rails (Aves: Rallidae) from the early Miocene St Bathans Fauna, Otago, New Zealand". Journal of Systematic Palaeontology. 17 (5): 423–449. doi: 10.1080/14772019.2018.1432710. S2CID  90809776.
  155. ^ a b Gerald Mayr; Vanesa L. De Pietri; Leigh Love; Al A. Mannering; R. Paul Scofield (2018). "A well-preserved new mid-Paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New Zealand". Journal of Vertebrate Paleontology. 37 (6): e1398169. doi: 10.1080/02724634.2017.1398169. S2CID  89744522.
  156. ^ Jenő (Eugen) Kessler (2018). "Evolution and presence of diurnal predatory birds in the Carpathian Basin". Ornis Hungarica. 26 (1): 102–123. doi: 10.1515/orhu-2018-0008. S2CID  91303297.
  157. ^ Zhiheng Li; Julia A. Clarke; Chad M. Eliason; Thomas A. Stidham; Tao Deng; Zhonghe Zhou (2018). "Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China". Scientific Reports. 8 (1): Article number 8099. Bibcode: 2018NatSR...8.8099L. doi: 10.1038/s41598-018-26178-x. PMC  5970207. PMID  29802379.
  158. ^ Oona M. Takano; David W. Steadman (2018). "Another new species of flightless Rail (Aves: Rallidae: Rallus) from Abaco, The Bahamas". Zootaxa. 4407 (3): 376–382. doi: 10.11646/zootaxa.4407.3.5. PMID  29690183.
  159. ^ N. V. Zelenkov (2018). "The earliest Asian duck (Anseriformes: Romainvilla) and the origin of Anatidae". Doklady Biological Sciences. 483 (1): 225–227. doi: 10.1134/S0012496618060030. PMID  30603943. S2CID  57427172.
  160. ^ Hiroshige Matsuoka; Yoshikazu Hasegawa (2018). "Birds around the Minatogawa Man: the Late Pleistocene avian fossil assemblage of the Minatogawa Fissure, southern part of Okinawa Island, Central Ryukyu Islands, Japan" (PDF). Bulletin of Gunma Museum of Natural History. 22: 1–21.
  161. ^ Vanesa L. De Pietri; R. Paul Scofield; Gavin J. Prideaux; Trevor H. Worthy (2018). "A new species of lapwing (Charadriidae: Vanellus) from the late Pliocene of central Australia". Emu - Austral Ornithology. 118 (4): 334–343. doi: 10.1080/01584197.2018.1464373. S2CID  90021022.
  162. ^ James P. Hansford; Samuel T. Turvey (2018). "Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world's largest bird". Royal Society Open Science. 5 (9): 181295. Bibcode: 2018RSOS....581295H. doi: 10.1098/rsos.181295. PMC  6170582. PMID  30839722.
  163. ^ James P. Hansford; Samuel T. Turvey (2020). "Correction to 'Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world's largest bird'". Royal Society Open Science. 7 (9): Article ID 201358. Bibcode: 2020RSOS....701358H. doi: 10.1098/rsos.201358. PMC  7540804. PMID  33047070.
  164. ^ Alicia Grealy; Gifford H. Miller; Matthew J. Phillips; Simon J. Clarke; Marilyn Fogel; Diana Patalwala; Paul Rigby; Alysia Hubbard; Beatrice Demarchi; Matthew Collins; Meaghan Mackie; Jorune Sakalauskaite; Josefin Stiller; Julia A. Clarke; Lucas J. Legendre; Kristina Douglass; James Hansford; James Haile; Michael Bunce (2023). "Molecular exploration of fossil eggshell uncovers hidden lineage of giant extinct bird". Nature Communications. 14 (1). 914. Bibcode: 2023NatCo..14..914G. doi: 10.1038/s41467-023-36405-3. PMC  9974994. PMID  36854679.
  165. ^ Zbigniew M. Bocheński; Teresa Tomek; Krzysztof Wertz; Johannes Happ; Małgorzata Bujoczek; Ewa Świdnicka (2018). "Articulated avian remains from the early Oligocene of Poland adds to our understanding of Passerine evolution". Palaeontologia Electronica. 21 (2): Article number 21.2.32A. doi: 10.26879/843.
  166. ^ Min Wang; Zhonghe Zhou (2018). "A new confuciusornithid (Aves: Pygostylia) from the Early Cretaceous increases the morphological disparity of the Confuciusornithidae". Zoological Journal of the Linnean Society. 185 (2): 417–430. doi: 10.1093/zoolinnean/zly045.
  167. ^ N. Adam Smith; Aj M. DeBee; Julia A. Clarke (2018). "Systematics and phylogeny of the Zygodactylidae (Aves, Neognathae) with description of a new species from the early Eocene of Wyoming, USA". PeerJ. 6: e4950. doi: 10.7717/peerj.4950. PMC  6022727. PMID  29967716.
  168. ^ Charlie A. Navarro; Elizabeth Martin-Silverstone; Thomas L. Stubbs (2018). "Morphometric assessment of pterosaur jaw disparity". Royal Society Open Science. 5 (4): 172130. Bibcode: 2018RSOS....572130N. doi: 10.1098/rsos.172130. PMC  5936930. PMID  29765665.
  169. ^ Jordan Bestwick; David M. Unwin; Richard J. Butler; Donald M. Henderson; Mark A. Purnell (2018). "Pterosaur dietary hypotheses: a review of ideas and approaches". Biological Reviews. 93 (4): 2021–2048. doi: 10.1111/brv.12431. PMC  6849529. PMID  29877021.
  170. ^ Alexander W.A. Kellner (2015). "Comments on Triassic pterosaurs with discussion about ontogeny and description of new taxa". Anais da Academia Brasileira de Ciências. 87 (2): 669–689. doi: 10.1590/0001-3765201520150307. PMID  26131631.
  171. ^ Fabio M. Dalla Vecchia (2018). "Comments on Triassic pterosaurs with a commentary on the "ontogenetic stages" of Kellner (2015) and the validity of Bergamodactylus wildi". Rivista Italiana di Paleontologia e Stratigrafia. 124 (2): 317–341. doi: 10.13130/2039-4942/10099.
  172. ^ David M. Unwin; David M. Martill (2018). "Systematic reassessment of the first Jurassic pterosaur from Thailand". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 181–186. doi: 10.1144/SP455.13. ISBN  978-1-78620-317-5. S2CID  133811716.
  173. ^ Kai R.K. Jäger; Helmut Tischlinger; Georg Oleschinski; P. Martin Sander (2018). "Goldfuß was right: Soft part preservation in the Late Jurassic pterosaur Scaphognathus crassirostris revealed by reflectance transformation imaging (RTI) and UV light and the auspicious beginnings of paleo-art". Palaeontologia Electronica. 21 (3): Article number 21.3.4T. doi: 10.26879/713.
  174. ^ Martill, David M.; Ibrahim, Nizar; Bouaziz, Samir (2018). "A giant pterosaur in the Early Cretaceous (Albian) of Tunisia". Journal of African Earth Sciences. 147: 331–337. Bibcode: 2018JAfES.147..331M. doi: 10.1016/j.jafrearsci.2018.05.008. ISSN  1464-343X. S2CID  135248088.
  175. ^ S. Christopher Bennett (2018). "New smallest specimen of the pterosaur Pteranodon and ontogenetic niches in pterosaurs". Journal of Paleontology. 92 (2): 254–271. Bibcode: 2018JPal...92..254B. doi: 10.1017/jpa.2017.84. S2CID  90893067.
  176. ^ Dana J. Ehret; T. Lynn Harrell, Jr. (2018). "Feeding traces on a Pteranodon (Reptilia: Pterosauria) bone from the Late Cretaceous (Campanian) Mooreville Chalk in Alabama, USA". PALAIOS. 33 (9): 414–418. Bibcode: 2018Palai..33..414E. doi: 10.2110/palo.2018.024. S2CID  135332458.
  177. ^ David W.E. Hone; Mark P. Witton; Michael B. Habib (2018). "Evidence for the Cretaceous shark Cretoxyrhina mantelli feeding on the pterosaur Pteranodon from the Niobrara Formation". PeerJ. 6: e6031. doi: 10.7717/peerj.6031. PMC  6296329. PMID  30581660.
  178. ^ Leonardo D. Ortiz David; Bernardo J. González Riga; Alexander W.A. Kellner (2018). "Discovery of the largest pterosaur from South America". Cretaceous Research. 83: 40–46. Bibcode: 2018CrRes..83...40O. doi: 10.1016/j.cretres.2017.10.004. hdl: 11336/41234.
  179. ^ D. W. E. Hone; S. Jiang; X. Xu (2018). "A taxonomic revision of Noripterus complicidens and Asian members of the Dsungaripteridae". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 149–157. doi: 10.1144/SP455.8. ISBN  978-1-78620-317-5. S2CID  131992645.
  180. ^ Richard Buchmann; Taissa Rodrigues; Sabrina Polegario; Alexander W.A. Kellner (2018). "New information on the postcranial skeleton of the Thalassodrominae (Pterosauria, Pterodactyloidea, Tapejaridae)". Historical Biology: An International Journal of Paleobiology. 30 (8): 1139–1149. doi: 10.1080/08912963.2017.1343314. S2CID  133637418.
  181. ^ Rodrigo V. Pêgas; Fabiana R. Costa; Alexander W.A. Kellner (2018). "New information on the osteology and a taxonomic revision of the genus Thalassodromeus (Pterodactyloidea, Tapejaridae, Thalassodrominae)". Journal of Vertebrate Paleontology. 38 (2): e1443273. Bibcode: 2018JVPal..38E3273P. doi: 10.1080/02724634.2018.1443273. S2CID  90477315.
  182. ^ Gregory F. Funston; Elizabeth Martin-Silverstone; Philip J. Currie (2017). "The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion". FACETS. 2: 559–574. doi: 10.1139/facets-2016-0067.
  183. ^ Gregory F. Funston; Elizabeth Martin-Silverstone; Philip J. Currie (2018). "Correction: The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion". FACETS. 3: 192–194. doi: 10.1139/facets-2018-0006.
  184. ^ Mátyás Vremir; Gareth Dyke; Zoltán Csiki-Sava; Dan Grigorescu; Eric Buffetaut (2018). "Partial mandible of a giant pterosaur from the uppermost Cretaceous (Maastrichtian) of the Hațeg Basin, Romania". Lethaia. 51 (4): 493–503. doi: 10.1111/let.12268.
  185. ^ a b c d e Nicholas R. Longrich; David M. Martill; Brian Andres (2018). "Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary". PLOS Biology. 16 (3): e2001663. doi: 10.1371/journal.pbio.2001663. PMC  5849296. PMID  29534059.
  186. ^ Brooks B. Britt; Fabio M. Dalla Vecchia; Daniel J. Chure; George F. Engelmann; Michael F. Whiting; Rodney D. Scheetz (2018). "Caelestiventus hanseni gen. et sp. nov. extends the desert-dwelling pterosaur record back 65 million years". Nature Ecology & Evolution. 2 (9): 1386–1392. doi: 10.1038/s41559-018-0627-y. PMID  30104753. S2CID  51984440.
  187. ^ Megan L. Jacobs; David M. Martill; Nizar Ibrahim; Nick Longrich (2019). "A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa". Cretaceous Research. 95: 77–88. Bibcode: 2019CrRes..95...77J. doi: 10.1016/j.cretres.2018.10.018. S2CID  134439172.
  188. ^ Borja Holgado; Rodrigo V. Pêgas (2020). "A taxonomic and phylogenetic review of the anhanguerid pterosaur group Coloborhynchinae and the new clade Tropeognathinae". Acta Palaeontologica Polonica. 65. doi: 10.4202/app.00751.2020.
  189. ^ Michael O’Sullivan; David M. Martill (2018). "Pterosauria of the Great Oolite Group (Bathonian, Middle Jurassic) of Oxfordshire and Gloucestershire, England". Acta Palaeontologica Polonica. 63 (4): 617–644. doi: 10.4202/app.00490.2018.
  190. ^ Romain Vullo; Géraldine Garcia; Pascal Godefroit; Aude Cincotta; Xavier Valentin (2018). "Mistralazhdarcho maggii, gen. et sp. nov., a new azhdarchid pterosaur from the Upper Cretaceous of southeastern France". Journal of Vertebrate Paleontology. 38 (4): (1)–(16). doi: 10.1080/02724634.2018.1502670. S2CID  91265861.
  191. ^ Stanislas Rigal; David M. Martill; Steven C. Sweetman (2018). "A new pterosaur specimen from the Upper Tunbridge Wells Sand Formation (Cretaceous, Valanginian) of southern England and a review of Lonchodectes sagittirostris (Owen 1874)". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 221–232. doi: 10.1144/SP455.5. ISBN  978-1-78620-317-5. S2CID  133080548.
  192. ^ Claudio Labita; David M. Martill (2020). "An articulated pterosaur wing from the Upper Cretaceous (Maastrichtian) phosphates of Morocco". Cretaceous Research. 119: Article number 104679. doi: 10.1016/j.cretres.2020.104679. S2CID  226328607.
  193. ^ Junchang Lü; Qingjin Meng; Baopeng Wang; Di Liu; Caizhi Shen; Yuguang Zhang (2018). "Short note on a new anurognathid pterosaur with evidence of perching behaviour from Jianchang of Liaoning Province, China". In D. W. E. Hone; M. P. Witton; D. M. Martill (eds.). New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. pp. 95–104. doi: 10.1144/SP455.16. ISBN  978-1-78620-317-5. S2CID  219196969.
  194. ^ David M. Martill; David M. Unwin; Nizar Ibrahim; Nick Longrich (2018). "A new edentulous pterosaur from the Cretaceous Kem Kem beds of south eastern Morocco". Cretaceous Research. 84: 1–12. Bibcode: 2018CrRes..84....1M. doi: 10.1016/j.cretres.2017.09.006. hdl: 2381/41058.
  195. ^ Sterling J. Nesbitt; Richard J. Butler; Martín D. Ezcurra; Alan J. Charig; Paul M. Barrett (2018). "The anatomy of Teleocrater rhadinus, an early avemetatarsalian from the lower portion of the Lifua Member of the Manda Beds (Middle Triassic)" (PDF). Journal of Vertebrate Paleontology. 37 (Supplement to No. 6): 142–177. doi: 10.1080/02724634.2017.1396539. S2CID  90421480.
  196. ^ Rodrigo Temp Müller; Max Cardoso Langer; Sérgio Dias-da-Silva (2018). "Ingroup relationships of Lagerpetidae (Avemetatarsalia: Dinosauromorpha): a further phylogenetic investigation on the understanding of dinosaur relatives". Zootaxa. 4392 (1): 149–158. doi: 10.11646/zootaxa.4392.1.7. PMID  29690420.
  197. ^ Adam D. Marsh (2018). "A new record of Dromomeron romeri Irmis et al., 2007 (Lagerpetidae) from the Chinle Formation of Arizona, U.S.A." PaleoBios. 35: ucmp_paleobios_42075.
  198. ^ Federico L. Agnolín; Sebastián Rozadilla (2018). "Phylogenetic reassessment of Pisanosaurus mertii Casamiquela, 1967, a basal dinosauriform from the Late Triassic of Argentina". Journal of Systematic Palaeontology. 16 (10): 853–879. doi: 10.1080/14772019.2017.1352623. hdl: 11336/47253. S2CID  90655527.
  199. ^ Matthew G. Baron; Megan E. Williams (2018). "A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution". Acta Palaeontologica Polonica. 63 (1): 129–145. doi: 10.4202/app.00372.2017.
  200. ^ Grzegorz Niedźwiedzki; Ewa Budziszewska-Karwowska (2018). "A new occurrence of the Late Triassic archosaur Smok in southern Poland". Acta Palaeontologica Polonica. 63 (4): 703–712. doi: 10.4202/app.00505.2018.
  201. ^ Volkan Sarıgül; Federico Agnolín; Sankar Chatterjee (2018). "Description of a multitaxic bone assemblage from the Upper Triassic Post Quarry of Texas (Dockum group), including a new small basal dinosauriform taxon" (PDF). Historia Natural, Tercera Serie. 8 (1): 5–24.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook